对香豆酸通过促进BACH1核的输出和降解来减轻缺血性脑卒中小鼠的神经元损伤。

IF 8.4 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Acta Pharmacologica Sinica Pub Date : 2025-08-01 Epub Date: 2025-03-14 DOI:10.1038/s41401-025-01510-0
Meng-Lu Song, Yun-Yun Sun, Hai-Jun Yin, Yi Li, Hua Yang
{"title":"对香豆酸通过促进BACH1核的输出和降解来减轻缺血性脑卒中小鼠的神经元损伤。","authors":"Meng-Lu Song, Yun-Yun Sun, Hai-Jun Yin, Yi Li, Hua Yang","doi":"10.1038/s41401-025-01510-0","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative damage induced by glutamate triggers neuronal death in cerebral ischemic/reperfusion injury. BTB and CNC homology 1 (BACH1) is a major link between the cellular heme level, the redox state and the transcriptional response. p-Coumaric acid (p-CA) is a natural antioxidant that has been shown to ameliorate ischemic/reperfusion injury. In this study, we investigated whether and how p-CA regulated BACH1 in ischemic/reperfusion injury from the perspective of BACH1 subcellular localization and function. Middle cerebral artery occlusion (MCAO) model was established in male mice. MCAO mice were treated with p-CA (50, 100 mg/kg, ip) twice 5 min after MCAO and 5 h after reperfusion operation, respectively. We showed that p-CA treatment exerted dramatic neuroprotective effects, which were associated with the inhibition of BACH1. In HT22 cells, treatment with p-CA (20 μM) ameliorated OGD/R or glutamate-induced oxidative damage and mitochondrial dysfunction through decreasing the protein level of BACH1, the beneficial effect of p-CA was blocked by BACH1 overexpression. We demonstrated that BACH1 level was markedly elevated in the nucleus of HT22 cells under glutamate stimulation, and transcriptionally regulated NADPH oxidase 4 (NOX4) expression, thus mediating ROS outbreak. p-CA treatment activated the activated Cdc42-associated kinase 1 (ACK1)/protein kinase B (AKT) cascade to facilitate the phosphorylation of BACH1, augmented its interaction with chromosome region maintenance 1 (CRM1), thereby leading to the export of BACH1 from the nucleus and degradation mediated by heme-oxidized IRP2 ubiquitin ligase-1 (HOIL-1). In accord with this, administration of ACK1 inhibitor AIM-100 (20 mg/kg, ip) 5 min after MCAO significantly attenuated the neuroprotective effects of p-CA in MCAO mice. We concluded that ACK1/AKT/BACH1 axis may serve as a promising therapeutic approach for the management of ischemic stroke, thereby broadening the clinical utility of p-CA.Keywords: ischemic/reperfusion injury; p-Coumaric acid; BACH1; NOX4; ACK1/AKT; AIM-100.</p>","PeriodicalId":6942,"journal":{"name":"Acta Pharmacologica Sinica","volume":" ","pages":"2136-2150"},"PeriodicalIF":8.4000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12274441/pdf/","citationCount":"0","resultStr":"{\"title\":\"p-Coumaric acid alleviates neuronal damage in ischemic stroke mice by promoting BACH1 nuclear export and degradation.\",\"authors\":\"Meng-Lu Song, Yun-Yun Sun, Hai-Jun Yin, Yi Li, Hua Yang\",\"doi\":\"10.1038/s41401-025-01510-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxidative damage induced by glutamate triggers neuronal death in cerebral ischemic/reperfusion injury. BTB and CNC homology 1 (BACH1) is a major link between the cellular heme level, the redox state and the transcriptional response. p-Coumaric acid (p-CA) is a natural antioxidant that has been shown to ameliorate ischemic/reperfusion injury. In this study, we investigated whether and how p-CA regulated BACH1 in ischemic/reperfusion injury from the perspective of BACH1 subcellular localization and function. Middle cerebral artery occlusion (MCAO) model was established in male mice. MCAO mice were treated with p-CA (50, 100 mg/kg, ip) twice 5 min after MCAO and 5 h after reperfusion operation, respectively. We showed that p-CA treatment exerted dramatic neuroprotective effects, which were associated with the inhibition of BACH1. In HT22 cells, treatment with p-CA (20 μM) ameliorated OGD/R or glutamate-induced oxidative damage and mitochondrial dysfunction through decreasing the protein level of BACH1, the beneficial effect of p-CA was blocked by BACH1 overexpression. We demonstrated that BACH1 level was markedly elevated in the nucleus of HT22 cells under glutamate stimulation, and transcriptionally regulated NADPH oxidase 4 (NOX4) expression, thus mediating ROS outbreak. p-CA treatment activated the activated Cdc42-associated kinase 1 (ACK1)/protein kinase B (AKT) cascade to facilitate the phosphorylation of BACH1, augmented its interaction with chromosome region maintenance 1 (CRM1), thereby leading to the export of BACH1 from the nucleus and degradation mediated by heme-oxidized IRP2 ubiquitin ligase-1 (HOIL-1). In accord with this, administration of ACK1 inhibitor AIM-100 (20 mg/kg, ip) 5 min after MCAO significantly attenuated the neuroprotective effects of p-CA in MCAO mice. We concluded that ACK1/AKT/BACH1 axis may serve as a promising therapeutic approach for the management of ischemic stroke, thereby broadening the clinical utility of p-CA.Keywords: ischemic/reperfusion injury; p-Coumaric acid; BACH1; NOX4; ACK1/AKT; AIM-100.</p>\",\"PeriodicalId\":6942,\"journal\":{\"name\":\"Acta Pharmacologica Sinica\",\"volume\":\" \",\"pages\":\"2136-2150\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12274441/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmacologica Sinica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41401-025-01510-0\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmacologica Sinica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41401-025-01510-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

脑缺血/再灌注损伤中谷氨酸诱导的氧化损伤触发神经元死亡。BTB和CNC同源1 (BACH1)是细胞血红素水平、氧化还原状态和转录反应之间的主要联系。对香豆酸(p-CA)是一种天然抗氧化剂,已被证明可以改善缺血/再灌注损伤。本研究从BACH1亚细胞定位和功能角度探讨了p-CA在缺血/再灌注损伤中是否以及如何调控BACH1。建立雄性小鼠大脑中动脉闭塞(MCAO)模型。MCAO小鼠分别于MCAO后5min和再灌注后5h给予两次p-CA(50、100 mg/kg, ip)。我们发现p-CA治疗具有显著的神经保护作用,这与BACH1的抑制有关。在HT22细胞中,p-CA (20 μM)通过降低BACH1蛋白水平改善OGD/R或谷氨酸诱导的氧化损伤和线粒体功能障碍,p-CA的有益作用被BACH1过表达阻断。我们发现,在谷氨酸刺激下,HT22细胞的细胞核中BACH1水平显著升高,并通过转录调控NADPH氧化酶4 (NOX4)的表达,从而介导ROS的爆发。p-CA处理激活了活化的cdc42相关激酶1 (ACK1)/蛋白激酶B (AKT)级联,促进BACH1的磷酸化,增强了其与染色体区域维持1 (CRM1)的相互作用,从而导致BACH1从细胞核输出,并由血红素氧化IRP2泛素连接酶1 (HOIL-1)介导降解。与此相一致的是,在MCAO后5min给予ACK1抑制剂AIM-100 (20 mg/kg, ip)可显著减弱p-CA对MCAO小鼠的神经保护作用。我们得出结论,ACK1/AKT/BACH1轴可能作为缺血性卒中治疗的一种有希望的治疗方法,从而扩大p-CA的临床应用范围。关键词:缺血/再灌注损伤;p-Coumaric酸;BACH1;NOX4;ACK1 / AKT;aim - 100。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
p-Coumaric acid alleviates neuronal damage in ischemic stroke mice by promoting BACH1 nuclear export and degradation.

Oxidative damage induced by glutamate triggers neuronal death in cerebral ischemic/reperfusion injury. BTB and CNC homology 1 (BACH1) is a major link between the cellular heme level, the redox state and the transcriptional response. p-Coumaric acid (p-CA) is a natural antioxidant that has been shown to ameliorate ischemic/reperfusion injury. In this study, we investigated whether and how p-CA regulated BACH1 in ischemic/reperfusion injury from the perspective of BACH1 subcellular localization and function. Middle cerebral artery occlusion (MCAO) model was established in male mice. MCAO mice were treated with p-CA (50, 100 mg/kg, ip) twice 5 min after MCAO and 5 h after reperfusion operation, respectively. We showed that p-CA treatment exerted dramatic neuroprotective effects, which were associated with the inhibition of BACH1. In HT22 cells, treatment with p-CA (20 μM) ameliorated OGD/R or glutamate-induced oxidative damage and mitochondrial dysfunction through decreasing the protein level of BACH1, the beneficial effect of p-CA was blocked by BACH1 overexpression. We demonstrated that BACH1 level was markedly elevated in the nucleus of HT22 cells under glutamate stimulation, and transcriptionally regulated NADPH oxidase 4 (NOX4) expression, thus mediating ROS outbreak. p-CA treatment activated the activated Cdc42-associated kinase 1 (ACK1)/protein kinase B (AKT) cascade to facilitate the phosphorylation of BACH1, augmented its interaction with chromosome region maintenance 1 (CRM1), thereby leading to the export of BACH1 from the nucleus and degradation mediated by heme-oxidized IRP2 ubiquitin ligase-1 (HOIL-1). In accord with this, administration of ACK1 inhibitor AIM-100 (20 mg/kg, ip) 5 min after MCAO significantly attenuated the neuroprotective effects of p-CA in MCAO mice. We concluded that ACK1/AKT/BACH1 axis may serve as a promising therapeutic approach for the management of ischemic stroke, thereby broadening the clinical utility of p-CA.Keywords: ischemic/reperfusion injury; p-Coumaric acid; BACH1; NOX4; ACK1/AKT; AIM-100.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Pharmacologica Sinica
Acta Pharmacologica Sinica 医学-化学综合
CiteScore
15.10
自引率
2.40%
发文量
4365
审稿时长
2 months
期刊介绍: APS (Acta Pharmacologica Sinica) welcomes submissions from diverse areas of pharmacology and the life sciences. While we encourage contributions across a broad spectrum, topics of particular interest include, but are not limited to: anticancer pharmacology, cardiovascular and pulmonary pharmacology, clinical pharmacology, drug discovery, gastrointestinal and hepatic pharmacology, genitourinary, renal, and endocrine pharmacology, immunopharmacology and inflammation, molecular and cellular pharmacology, neuropharmacology, pharmaceutics, and pharmacokinetics. Join us in sharing your research and insights in pharmacology and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信