时间分数阶共振Davey-Stewartson方程的一些新的孤子解

IF 0.9 Q3 MATHEMATICS, APPLIED
Esin İlhan, Muhammed Yiğider, Ercan Çelik, Hasan Bulut
{"title":"时间分数阶共振Davey-Stewartson方程的一些新的孤子解","authors":"Esin İlhan,&nbsp;Muhammed Yiğider,&nbsp;Ercan Çelik,&nbsp;Hasan Bulut","doi":"10.1155/cmm4/5529397","DOIUrl":null,"url":null,"abstract":"<p>In this study, the Bernoulli subequation method (BS-EM) is applied to investigate the traveling wave solutions of the (2 + 1)-dimensional resonant Davey–Stewartson system. By employing a wave transformation, the system’s nonlinear partial differential equation is reduced to a nonlinear ordinary differential equation, which is then solved using the BS-EM approach. As a result, several new traveling wave solutions, which have not been previously reported in the literature, have been successfully obtained. These solutions provide new insights into the physical dynamics of the system and also satisfy the (2 + 1)-dimensional time–fractional resonant Davey–Stewartson equation. Furthermore, the analytical and graphical analyses of the obtained solutions have been carried out, and the wave profiles have been examined under various parameter conditions. All computations and graphical visualizations in this study were performed using the Wolfram Mathematica 12 software.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2025 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/cmm4/5529397","citationCount":"0","resultStr":"{\"title\":\"Some New Soliton Solutions of Time Fractional Resonant Davey–Stewartson Equations\",\"authors\":\"Esin İlhan,&nbsp;Muhammed Yiğider,&nbsp;Ercan Çelik,&nbsp;Hasan Bulut\",\"doi\":\"10.1155/cmm4/5529397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the Bernoulli subequation method (BS-EM) is applied to investigate the traveling wave solutions of the (2 + 1)-dimensional resonant Davey–Stewartson system. By employing a wave transformation, the system’s nonlinear partial differential equation is reduced to a nonlinear ordinary differential equation, which is then solved using the BS-EM approach. As a result, several new traveling wave solutions, which have not been previously reported in the literature, have been successfully obtained. These solutions provide new insights into the physical dynamics of the system and also satisfy the (2 + 1)-dimensional time–fractional resonant Davey–Stewartson equation. Furthermore, the analytical and graphical analyses of the obtained solutions have been carried out, and the wave profiles have been examined under various parameter conditions. All computations and graphical visualizations in this study were performed using the Wolfram Mathematica 12 software.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/cmm4/5529397\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/cmm4/5529397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/cmm4/5529397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文采用伯努利子方程法(BS-EM)研究了(2 + 1)维谐振Davey-Stewartson系统的行波解。通过波变换,将系统的非线性偏微分方程化为非线性常微分方程,然后利用BS-EM方法求解。结果,成功地获得了一些以前文献中未报道的新的行波解。这些解决方案为系统的物理动力学提供了新的见解,并且还满足(2 + 1)维时间分数共振Davey-Stewartson方程。此外,还对得到的解进行了解析和图解分析,并对不同参数条件下的波浪剖面进行了检验。本研究的所有计算和图形可视化均使用Wolfram Mathematica 12软件进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Some New Soliton Solutions of Time Fractional Resonant Davey–Stewartson Equations

Some New Soliton Solutions of Time Fractional Resonant Davey–Stewartson Equations

In this study, the Bernoulli subequation method (BS-EM) is applied to investigate the traveling wave solutions of the (2 + 1)-dimensional resonant Davey–Stewartson system. By employing a wave transformation, the system’s nonlinear partial differential equation is reduced to a nonlinear ordinary differential equation, which is then solved using the BS-EM approach. As a result, several new traveling wave solutions, which have not been previously reported in the literature, have been successfully obtained. These solutions provide new insights into the physical dynamics of the system and also satisfy the (2 + 1)-dimensional time–fractional resonant Davey–Stewartson equation. Furthermore, the analytical and graphical analyses of the obtained solutions have been carried out, and the wave profiles have been examined under various parameter conditions. All computations and graphical visualizations in this study were performed using the Wolfram Mathematica 12 software.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信