Esin İlhan, Muhammed Yiğider, Ercan Çelik, Hasan Bulut
{"title":"时间分数阶共振Davey-Stewartson方程的一些新的孤子解","authors":"Esin İlhan, Muhammed Yiğider, Ercan Çelik, Hasan Bulut","doi":"10.1155/cmm4/5529397","DOIUrl":null,"url":null,"abstract":"<p>In this study, the Bernoulli subequation method (BS-EM) is applied to investigate the traveling wave solutions of the (2 + 1)-dimensional resonant Davey–Stewartson system. By employing a wave transformation, the system’s nonlinear partial differential equation is reduced to a nonlinear ordinary differential equation, which is then solved using the BS-EM approach. As a result, several new traveling wave solutions, which have not been previously reported in the literature, have been successfully obtained. These solutions provide new insights into the physical dynamics of the system and also satisfy the (2 + 1)-dimensional time–fractional resonant Davey–Stewartson equation. Furthermore, the analytical and graphical analyses of the obtained solutions have been carried out, and the wave profiles have been examined under various parameter conditions. All computations and graphical visualizations in this study were performed using the Wolfram Mathematica 12 software.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"2025 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/cmm4/5529397","citationCount":"0","resultStr":"{\"title\":\"Some New Soliton Solutions of Time Fractional Resonant Davey–Stewartson Equations\",\"authors\":\"Esin İlhan, Muhammed Yiğider, Ercan Çelik, Hasan Bulut\",\"doi\":\"10.1155/cmm4/5529397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the Bernoulli subequation method (BS-EM) is applied to investigate the traveling wave solutions of the (2 + 1)-dimensional resonant Davey–Stewartson system. By employing a wave transformation, the system’s nonlinear partial differential equation is reduced to a nonlinear ordinary differential equation, which is then solved using the BS-EM approach. As a result, several new traveling wave solutions, which have not been previously reported in the literature, have been successfully obtained. These solutions provide new insights into the physical dynamics of the system and also satisfy the (2 + 1)-dimensional time–fractional resonant Davey–Stewartson equation. Furthermore, the analytical and graphical analyses of the obtained solutions have been carried out, and the wave profiles have been examined under various parameter conditions. All computations and graphical visualizations in this study were performed using the Wolfram Mathematica 12 software.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/cmm4/5529397\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/cmm4/5529397\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/cmm4/5529397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Some New Soliton Solutions of Time Fractional Resonant Davey–Stewartson Equations
In this study, the Bernoulli subequation method (BS-EM) is applied to investigate the traveling wave solutions of the (2 + 1)-dimensional resonant Davey–Stewartson system. By employing a wave transformation, the system’s nonlinear partial differential equation is reduced to a nonlinear ordinary differential equation, which is then solved using the BS-EM approach. As a result, several new traveling wave solutions, which have not been previously reported in the literature, have been successfully obtained. These solutions provide new insights into the physical dynamics of the system and also satisfy the (2 + 1)-dimensional time–fractional resonant Davey–Stewartson equation. Furthermore, the analytical and graphical analyses of the obtained solutions have been carried out, and the wave profiles have been examined under various parameter conditions. All computations and graphical visualizations in this study were performed using the Wolfram Mathematica 12 software.