{"title":"Theoretical investigation of dual hydrogen-bonding interactions and ESIDPT mechanism associated with halogen substituted 2,5-bis(4,5-diphenyl-1H-imidazol-2-yl)benzene-1,4-diol derivatives","authors":"Jiaoni Pan, Jinfeng Zhao, Jiahe Chen","doi":"10.1007/s00894-025-06343-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>In this work, using the TDDFT method, we mainly focus on exploring the photo-induced excited state dual hydrogen-bonding interactions for halogen element substituted 2,5-bis(4,5-diphenyl-1H-imidazol-2-yl)benzene-1,4-diol (BDIBD) derivatives (i.e., BDIBD-FF, BDIBD-FCl and BDIBD-FBr). Analyses of chemical bond properties, bond lengths and bond angles, infrared (IR) spectral shifts, as well as the simulated core-valence bifurcation (CVB) parameters, we find upon excitation dual hydrogen bonds of BDIBD-FF, BDIBD-FCl, and BDIBD-FBr are strengthened in the S<sub>1</sub> state. Variations about photo-induced charge further reveal the excited state intramolecular double proton transfer (ESIDPT) tendency. By constructing potential energy surfaces (PESs), we not only clarify the stepwise ESIDPT mechanism for BDIBD derivatives, but also present the halogen element regulated ESIDPT behaviors.</p><h3>Methods</h3><p>Based on Gaussian 16 program, all BDIBD derivatives were optimized using DFT and TDDFT methods with D3-B3LYP and TZVP theoretical levels. By comparing geometries variations and exploring core-valence bifurcation indexes for predicting hydrogen-bonding strength using Multiwfn 3.8, dual hydrogen-bonding interactions were analyzed. Potential energy surfaces with transition state forms were explored to reveal the ESIDPT mechanism.</p></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"31 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-025-06343-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Theoretical investigation of dual hydrogen-bonding interactions and ESIDPT mechanism associated with halogen substituted 2,5-bis(4,5-diphenyl-1H-imidazol-2-yl)benzene-1,4-diol derivatives
Context
In this work, using the TDDFT method, we mainly focus on exploring the photo-induced excited state dual hydrogen-bonding interactions for halogen element substituted 2,5-bis(4,5-diphenyl-1H-imidazol-2-yl)benzene-1,4-diol (BDIBD) derivatives (i.e., BDIBD-FF, BDIBD-FCl and BDIBD-FBr). Analyses of chemical bond properties, bond lengths and bond angles, infrared (IR) spectral shifts, as well as the simulated core-valence bifurcation (CVB) parameters, we find upon excitation dual hydrogen bonds of BDIBD-FF, BDIBD-FCl, and BDIBD-FBr are strengthened in the S1 state. Variations about photo-induced charge further reveal the excited state intramolecular double proton transfer (ESIDPT) tendency. By constructing potential energy surfaces (PESs), we not only clarify the stepwise ESIDPT mechanism for BDIBD derivatives, but also present the halogen element regulated ESIDPT behaviors.
Methods
Based on Gaussian 16 program, all BDIBD derivatives were optimized using DFT and TDDFT methods with D3-B3LYP and TZVP theoretical levels. By comparing geometries variations and exploring core-valence bifurcation indexes for predicting hydrogen-bonding strength using Multiwfn 3.8, dual hydrogen-bonding interactions were analyzed. Potential energy surfaces with transition state forms were explored to reveal the ESIDPT mechanism.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.