感知显示光谱的人工智能驱动框架:调光、观察者年龄和观看距离的影响

IF 3.7 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
N. Senyer , D. Durmus
{"title":"感知显示光谱的人工智能驱动框架:调光、观察者年龄和观看距离的影响","authors":"N. Senyer ,&nbsp;D. Durmus","doi":"10.1016/j.displa.2025.103024","DOIUrl":null,"url":null,"abstract":"<div><div>Displays have become ubiquitous in modern society, serving as pervasive light sources that exert visual and non-visual effects on human physiology and behavior. Despite their widespread use and impact, a universal framework for characterizing perceived display light output across various viewing conditions still needs to be developed. This study introduces a novel, AI-driven framework for comprehensive perceived display light output characterization, accounting for the effects of observer age, viewing distance, and display dimming. The framework employs a deep neural network (DNN) trained on an extensive dataset of measured display spectra to predict spectral power distributions (SPDs) from RGB inputs. To simulate real-world scenarios, the DNN-predicted SPDs were transformed to account for viewing distance (36 cm–71 cm), display dimming (0–100 %), and observer age (1–100 years). The initial model achieved high accuracy (<em>R</em>2<sub>avg</sub> = 0.99), maintaining robust performance even for challenging cases (<em>R</em><sup>2</sup> &gt; 0.94). Results show high accuracy in predicting photometric, colorimetric, and circadian measures. Future research will incorporate other parameters to the proposed framework.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"88 ","pages":"Article 103024"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An AI-driven framework for perceived display spectra: The effects of dimming, observer age, and viewing distance\",\"authors\":\"N. Senyer ,&nbsp;D. Durmus\",\"doi\":\"10.1016/j.displa.2025.103024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Displays have become ubiquitous in modern society, serving as pervasive light sources that exert visual and non-visual effects on human physiology and behavior. Despite their widespread use and impact, a universal framework for characterizing perceived display light output across various viewing conditions still needs to be developed. This study introduces a novel, AI-driven framework for comprehensive perceived display light output characterization, accounting for the effects of observer age, viewing distance, and display dimming. The framework employs a deep neural network (DNN) trained on an extensive dataset of measured display spectra to predict spectral power distributions (SPDs) from RGB inputs. To simulate real-world scenarios, the DNN-predicted SPDs were transformed to account for viewing distance (36 cm–71 cm), display dimming (0–100 %), and observer age (1–100 years). The initial model achieved high accuracy (<em>R</em>2<sub>avg</sub> = 0.99), maintaining robust performance even for challenging cases (<em>R</em><sup>2</sup> &gt; 0.94). Results show high accuracy in predicting photometric, colorimetric, and circadian measures. Future research will incorporate other parameters to the proposed framework.</div></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"88 \",\"pages\":\"Article 103024\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141938225000617\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225000617","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

显示器在现代社会中已经变得无处不在,作为无处不在的光源,对人类的生理和行为施加视觉和非视觉影响。尽管它们被广泛使用和影响,但仍然需要开发一个通用的框架来表征各种观看条件下的感知显示光输出。本研究引入了一个新颖的、人工智能驱动的框架,用于综合感知显示光输出表征,考虑到观察者年龄、观看距离和显示调光的影响。该框架采用深度神经网络(DNN)在测量显示光谱的广泛数据集上进行训练,以预测RGB输入的光谱功率分布(spd)。为了模拟真实场景,将dnn预测的spd转换为考虑观看距离(36 cm - 71 cm),显示器调光(0 - 100%)和观察者年龄(1-100岁)。初始模型实现了高精度(R2avg = 0.99),即使在具有挑战性的情况下(R2 >;0.94)。结果表明,在预测光度、比色和昼夜节律测量方面具有很高的准确性。未来的研究将把其他参数纳入拟议的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An AI-driven framework for perceived display spectra: The effects of dimming, observer age, and viewing distance
Displays have become ubiquitous in modern society, serving as pervasive light sources that exert visual and non-visual effects on human physiology and behavior. Despite their widespread use and impact, a universal framework for characterizing perceived display light output across various viewing conditions still needs to be developed. This study introduces a novel, AI-driven framework for comprehensive perceived display light output characterization, accounting for the effects of observer age, viewing distance, and display dimming. The framework employs a deep neural network (DNN) trained on an extensive dataset of measured display spectra to predict spectral power distributions (SPDs) from RGB inputs. To simulate real-world scenarios, the DNN-predicted SPDs were transformed to account for viewing distance (36 cm–71 cm), display dimming (0–100 %), and observer age (1–100 years). The initial model achieved high accuracy (R2avg = 0.99), maintaining robust performance even for challenging cases (R2 > 0.94). Results show high accuracy in predicting photometric, colorimetric, and circadian measures. Future research will incorporate other parameters to the proposed framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信