{"title":"非协调语法隐私:用于多个独立数据发布的可组合新指标","authors":"Adrián Tobar Nicolau;Javier Parra-Arnau;Jordi Forné;Vicenç Torra","doi":"10.1109/TIFS.2025.3551645","DOIUrl":null,"url":null,"abstract":"A privacy model is a privacy condition, dependent on a parameter, that guarantees an upper bound on the risk of reidentification disclosure and maybe also on the risk of attribute disclosure by an adversary. A privacy model is composable if the privacy guarantees of the model are preserved, possibly to a limited extent, after repeated independent application of the privacy model. From the opposite perspective, a privacy model is not composable if multiple independent data releases, each of them satisfying the requirements of the privacy model, may result in a privacy breach. Current privacy models are broadly classified into syntactic ones (such as k-anonymity and l-diversity) and semantic ones, which essentially refer to <inline-formula> <tex-math>$\\varepsilon $ </tex-math></inline-formula>-differential privacy (e-DP) and variations thereof. While e-DP and its variants offer strong composability properties, syntactic notions are not composable unless data releases are conducted by a single, centralized data holder that uses specialized notions such as m-invariance and <inline-formula> <tex-math>$\\tau $ </tex-math></inline-formula>-safety. In this work, we propose m-uncoordinated-syntactic-privacy (m-USP), the first syntactic notion with composability properties for the independent publication of nondisjoint data, in other words, without a centralized data holder. Theoretical results are formally proven, and experimental results demonstrate that the risk to individuals does not increase significantly, in contrast to non-composable methods, that are susceptible to attribute disclosure. In most cases, the utility degradation caused by the extra protection is less than 5% and decreases as the value of m increases.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"3362-3373"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10926580","citationCount":"0","resultStr":"{\"title\":\"Uncoordinated Syntactic Privacy: A New Composable Metric for Multiple, Independent Data Publishing\",\"authors\":\"Adrián Tobar Nicolau;Javier Parra-Arnau;Jordi Forné;Vicenç Torra\",\"doi\":\"10.1109/TIFS.2025.3551645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A privacy model is a privacy condition, dependent on a parameter, that guarantees an upper bound on the risk of reidentification disclosure and maybe also on the risk of attribute disclosure by an adversary. A privacy model is composable if the privacy guarantees of the model are preserved, possibly to a limited extent, after repeated independent application of the privacy model. From the opposite perspective, a privacy model is not composable if multiple independent data releases, each of them satisfying the requirements of the privacy model, may result in a privacy breach. Current privacy models are broadly classified into syntactic ones (such as k-anonymity and l-diversity) and semantic ones, which essentially refer to <inline-formula> <tex-math>$\\\\varepsilon $ </tex-math></inline-formula>-differential privacy (e-DP) and variations thereof. While e-DP and its variants offer strong composability properties, syntactic notions are not composable unless data releases are conducted by a single, centralized data holder that uses specialized notions such as m-invariance and <inline-formula> <tex-math>$\\\\tau $ </tex-math></inline-formula>-safety. In this work, we propose m-uncoordinated-syntactic-privacy (m-USP), the first syntactic notion with composability properties for the independent publication of nondisjoint data, in other words, without a centralized data holder. Theoretical results are formally proven, and experimental results demonstrate that the risk to individuals does not increase significantly, in contrast to non-composable methods, that are susceptible to attribute disclosure. In most cases, the utility degradation caused by the extra protection is less than 5% and decreases as the value of m increases.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"3362-3373\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10926580\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10926580/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10926580/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Uncoordinated Syntactic Privacy: A New Composable Metric for Multiple, Independent Data Publishing
A privacy model is a privacy condition, dependent on a parameter, that guarantees an upper bound on the risk of reidentification disclosure and maybe also on the risk of attribute disclosure by an adversary. A privacy model is composable if the privacy guarantees of the model are preserved, possibly to a limited extent, after repeated independent application of the privacy model. From the opposite perspective, a privacy model is not composable if multiple independent data releases, each of them satisfying the requirements of the privacy model, may result in a privacy breach. Current privacy models are broadly classified into syntactic ones (such as k-anonymity and l-diversity) and semantic ones, which essentially refer to $\varepsilon $ -differential privacy (e-DP) and variations thereof. While e-DP and its variants offer strong composability properties, syntactic notions are not composable unless data releases are conducted by a single, centralized data holder that uses specialized notions such as m-invariance and $\tau $ -safety. In this work, we propose m-uncoordinated-syntactic-privacy (m-USP), the first syntactic notion with composability properties for the independent publication of nondisjoint data, in other words, without a centralized data holder. Theoretical results are formally proven, and experimental results demonstrate that the risk to individuals does not increase significantly, in contrast to non-composable methods, that are susceptible to attribute disclosure. In most cases, the utility degradation caused by the extra protection is less than 5% and decreases as the value of m increases.
期刊介绍:
The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features