FlowHON:使用高阶网络表示流场。

Nan Chen, Zhihong Li, Jun Tao
{"title":"FlowHON:使用高阶网络表示流场。","authors":"Nan Chen, Zhihong Li, Jun Tao","doi":"10.1109/TVCG.2025.3550130","DOIUrl":null,"url":null,"abstract":"<p><p>Flow fields are often partitioned into data blocks for massively parallel computation and analysis based on blockwise relationships. However, most of the previous techniques only consider the first-order dependencies among blocks, which is insufficient in describing complex flow patterns. In this work, we present FlowHON, an approach to construct higher-order networks (HONs) from flow fields. FlowHON captures the inherent higher-order dependencies in flow fields as nodes and estimates the transitions among them as edges. We formulate the HON construction as an optimization problem with three linear transformations. The first two layers correspond to the node generation and the third one corresponds to edge estimation. Our formulation allows the node generation and edge estimation to be solved in a unified framework. With FlowHON, the rich set of traditional graph algorithms can be applied without any modification to analyze flow fields, while leveraging the higher-order information to understand the inherent structure and manage flow data for efficiency. We demonstrate the effectiveness of FlowHON using a series of downstream tasks, including estimating the density of particles during tracing, partitioning flow fields for data management, and understanding flow fields using the node-link diagram representation of networks.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FlowHON: Representing Flow Fields Using Higher-Order Networks.\",\"authors\":\"Nan Chen, Zhihong Li, Jun Tao\",\"doi\":\"10.1109/TVCG.2025.3550130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Flow fields are often partitioned into data blocks for massively parallel computation and analysis based on blockwise relationships. However, most of the previous techniques only consider the first-order dependencies among blocks, which is insufficient in describing complex flow patterns. In this work, we present FlowHON, an approach to construct higher-order networks (HONs) from flow fields. FlowHON captures the inherent higher-order dependencies in flow fields as nodes and estimates the transitions among them as edges. We formulate the HON construction as an optimization problem with three linear transformations. The first two layers correspond to the node generation and the third one corresponds to edge estimation. Our formulation allows the node generation and edge estimation to be solved in a unified framework. With FlowHON, the rich set of traditional graph algorithms can be applied without any modification to analyze flow fields, while leveraging the higher-order information to understand the inherent structure and manage flow data for efficiency. We demonstrate the effectiveness of FlowHON using a series of downstream tasks, including estimating the density of particles during tracing, partitioning flow fields for data management, and understanding flow fields using the node-link diagram representation of networks.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2025.3550130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3550130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

流场通常被划分成数据块,以进行基于块关系的大规模并行计算和分析。然而,以往的技术大多只考虑了块之间的一阶依赖关系,这对于描述复杂的流模式是不够的。在这项工作中,我们提出了FlowHON,一种从流场构建高阶网络(hon)的方法。FlowHON捕获流场中固有的高阶依赖关系作为节点,并将它们之间的过渡估计为边缘。我们将HON的构造表述为具有三个线性变换的优化问题。前两层对应节点生成,第三层对应边缘估计。我们的公式允许在一个统一的框架中解决节点生成和边缘估计。使用FlowHON,可以不加任何修改地应用丰富的传统图算法集来分析流场,同时利用高阶信息来了解流场的内在结构并管理流数据,从而提高效率。我们通过一系列下游任务证明了FlowHON的有效性,包括在跟踪过程中估计颗粒密度,为数据管理划分流场,以及使用网络的节点链接图表示来理解流场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FlowHON: Representing Flow Fields Using Higher-Order Networks.

Flow fields are often partitioned into data blocks for massively parallel computation and analysis based on blockwise relationships. However, most of the previous techniques only consider the first-order dependencies among blocks, which is insufficient in describing complex flow patterns. In this work, we present FlowHON, an approach to construct higher-order networks (HONs) from flow fields. FlowHON captures the inherent higher-order dependencies in flow fields as nodes and estimates the transitions among them as edges. We formulate the HON construction as an optimization problem with three linear transformations. The first two layers correspond to the node generation and the third one corresponds to edge estimation. Our formulation allows the node generation and edge estimation to be solved in a unified framework. With FlowHON, the rich set of traditional graph algorithms can be applied without any modification to analyze flow fields, while leveraging the higher-order information to understand the inherent structure and manage flow data for efficiency. We demonstrate the effectiveness of FlowHON using a series of downstream tasks, including estimating the density of particles during tracing, partitioning flow fields for data management, and understanding flow fields using the node-link diagram representation of networks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信