基于低秩张量分解的动态超声图像散斑去噪。

Metin Calis, Massimo Mischi, Alle-Jan van der Veen, Borbala Hunyadi
{"title":"基于低秩张量分解的动态超声图像散斑去噪。","authors":"Metin Calis, Massimo Mischi, Alle-Jan van der Veen, Borbala Hunyadi","doi":"10.1109/TMI.2025.3551660","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic contrast-enhanced ultrasound (DCEUS) is an imaging modality for assessing microvascular perfusion and dispersion kinetics. However, the presence of speckle noise may hamper the quantitative analysis of the contrast kinetics. Common speckle denoising techniques based on low-rank approximations typically model the speckle noise as white Gaussian noise (WGN) after the log transformation and apply matrix-based algorithms. We address the high dimensionality of the 4D DCEUS data and apply low-rank tensor decomposition techniques to denoise speckles. Although there are many tensor decompositions that can describe low rankness, we limit our research to multilinear rank and tubal rank. We introduce a gradient-based extension of the multilinear singular value decomposition to model low multilinear rankness, assuming that the log-transformed speckle noise follows a Fisher-tippet distribution. In addition, we apply an algorithm based on tensor singular value decomposition to model low tubal rankness, assuming that the log-transformed speckle noise is WGN with sparse outliers. The effectiveness of the methods is evaluated through simulations and phantom studies. Additionally, the tensor-based algorithms' real-world performance is assessed using DCEUS prostate recordings. Comparative analyses with existing DCEUS denoising literature are conducted, and the algorithms' capabilities are showcased in the context of prostate cancer classification. The addition of Fisher-tippet distribution did not improve the results of tr-MLSVD in the in vivo case. However, most cancer markers are better distinguishable when using a tensor denoising technique than state-of-the-art approaches.</p>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speckle Denoising of Dynamic Contrast-enhanced Ultrasound using Low-rank Tensor Decomposition.\",\"authors\":\"Metin Calis, Massimo Mischi, Alle-Jan van der Veen, Borbala Hunyadi\",\"doi\":\"10.1109/TMI.2025.3551660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dynamic contrast-enhanced ultrasound (DCEUS) is an imaging modality for assessing microvascular perfusion and dispersion kinetics. However, the presence of speckle noise may hamper the quantitative analysis of the contrast kinetics. Common speckle denoising techniques based on low-rank approximations typically model the speckle noise as white Gaussian noise (WGN) after the log transformation and apply matrix-based algorithms. We address the high dimensionality of the 4D DCEUS data and apply low-rank tensor decomposition techniques to denoise speckles. Although there are many tensor decompositions that can describe low rankness, we limit our research to multilinear rank and tubal rank. We introduce a gradient-based extension of the multilinear singular value decomposition to model low multilinear rankness, assuming that the log-transformed speckle noise follows a Fisher-tippet distribution. In addition, we apply an algorithm based on tensor singular value decomposition to model low tubal rankness, assuming that the log-transformed speckle noise is WGN with sparse outliers. The effectiveness of the methods is evaluated through simulations and phantom studies. Additionally, the tensor-based algorithms' real-world performance is assessed using DCEUS prostate recordings. Comparative analyses with existing DCEUS denoising literature are conducted, and the algorithms' capabilities are showcased in the context of prostate cancer classification. The addition of Fisher-tippet distribution did not improve the results of tr-MLSVD in the in vivo case. However, most cancer markers are better distinguishable when using a tensor denoising technique than state-of-the-art approaches.</p>\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TMI.2025.3551660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TMI.2025.3551660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态对比增强超声(DCEUS)是一种评估微血管灌注和弥散动力学的成像方式。然而,散斑噪声的存在可能会妨碍对比动力学的定量分析。基于低秩近似的散斑去噪技术通常将散斑噪声建模为对数变换后的高斯白噪声(WGN),并采用基于矩阵的算法。我们解决了四维DCEUS数据的高维性,并应用低秩张量分解技术来降噪斑点。虽然有许多张量分解可以描述低秩,但我们的研究仅限于多线性秩和管状秩。我们引入了基于梯度的扩展多线性奇异值分解来模拟低多线性秩,假设对数变换的散斑噪声遵循Fisher-tippet分布。此外,我们采用基于张量奇异值分解的算法对低管秩度进行建模,假设对数变换后的散斑噪声是具有稀疏离群点的WGN。通过仿真和仿真研究对方法的有效性进行了评价。此外,使用DCEUS前列腺记录评估基于张量的算法的实际性能。与现有的DCEUS去噪文献进行了对比分析,并在前列腺癌分类的背景下展示了算法的能力。在体内病例中,加入Fisher-tippet分布并没有改善tr-MLSVD的结果。然而,当使用张量去噪技术时,大多数癌症标志物比最先进的方法更好地区分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speckle Denoising of Dynamic Contrast-enhanced Ultrasound using Low-rank Tensor Decomposition.

Dynamic contrast-enhanced ultrasound (DCEUS) is an imaging modality for assessing microvascular perfusion and dispersion kinetics. However, the presence of speckle noise may hamper the quantitative analysis of the contrast kinetics. Common speckle denoising techniques based on low-rank approximations typically model the speckle noise as white Gaussian noise (WGN) after the log transformation and apply matrix-based algorithms. We address the high dimensionality of the 4D DCEUS data and apply low-rank tensor decomposition techniques to denoise speckles. Although there are many tensor decompositions that can describe low rankness, we limit our research to multilinear rank and tubal rank. We introduce a gradient-based extension of the multilinear singular value decomposition to model low multilinear rankness, assuming that the log-transformed speckle noise follows a Fisher-tippet distribution. In addition, we apply an algorithm based on tensor singular value decomposition to model low tubal rankness, assuming that the log-transformed speckle noise is WGN with sparse outliers. The effectiveness of the methods is evaluated through simulations and phantom studies. Additionally, the tensor-based algorithms' real-world performance is assessed using DCEUS prostate recordings. Comparative analyses with existing DCEUS denoising literature are conducted, and the algorithms' capabilities are showcased in the context of prostate cancer classification. The addition of Fisher-tippet distribution did not improve the results of tr-MLSVD in the in vivo case. However, most cancer markers are better distinguishable when using a tensor denoising technique than state-of-the-art approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信