用于增强医学图像分割的分层上升密集连接网络。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Dibin Zhou, Mingxuan Zhao, Wenhao Liu, Xirui Gu
{"title":"用于增强医学图像分割的分层上升密集连接网络。","authors":"Dibin Zhou, Mingxuan Zhao, Wenhao Liu, Xirui Gu","doi":"10.1007/s11517-025-03342-w","DOIUrl":null,"url":null,"abstract":"<p><p>Medical image segmentation is a key component in computer-aided diagnostic technology. In the past few years, the U-shaped architecture-based hierarchical model has become the mainstream approach, which however often fails to provide accurate results due to the loss of detailed features. To address this issue, this paper proposes a hierarchical ascending densely connected network, called HADCNet, to capture both local short-range and global long-range pathological features in a hierarchically organized network for more accurate segmentation. First, HADCNet devises a cross-scale ascending densely connected structure with a multi-path attention gate (MAG) to achieve full-scale interaction of global pathological features. Then, spatial-channel reconstruction units (called SRU and CRU) are introduced to decrease redundant computation and facilitate representative feature learning. Finally, multi-scale outputs are aggregated for final imaging. Extensive experiments demonstrate that our method achieves an average DSC of 84.45% and HD95 of 17.55 mm on the Synapse dataset (for multi-organ segmentation), with a similarly impressive performance on the ACDC (for cardiac diagnosis) and ISIC2018 datasets (for lesion segmentation). Additionally, HADCNet can be flexibly incorporated into existing backbone networks for better performance, e.g., combining HADC with TransUnet and SwinUnet, respectively, leads to 3.28% and 2.53% Dice score improvements.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HADCN: a hierarchical ascending densely connected network for enhanced medical image segmentation.\",\"authors\":\"Dibin Zhou, Mingxuan Zhao, Wenhao Liu, Xirui Gu\",\"doi\":\"10.1007/s11517-025-03342-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medical image segmentation is a key component in computer-aided diagnostic technology. In the past few years, the U-shaped architecture-based hierarchical model has become the mainstream approach, which however often fails to provide accurate results due to the loss of detailed features. To address this issue, this paper proposes a hierarchical ascending densely connected network, called HADCNet, to capture both local short-range and global long-range pathological features in a hierarchically organized network for more accurate segmentation. First, HADCNet devises a cross-scale ascending densely connected structure with a multi-path attention gate (MAG) to achieve full-scale interaction of global pathological features. Then, spatial-channel reconstruction units (called SRU and CRU) are introduced to decrease redundant computation and facilitate representative feature learning. Finally, multi-scale outputs are aggregated for final imaging. Extensive experiments demonstrate that our method achieves an average DSC of 84.45% and HD95 of 17.55 mm on the Synapse dataset (for multi-organ segmentation), with a similarly impressive performance on the ACDC (for cardiac diagnosis) and ISIC2018 datasets (for lesion segmentation). Additionally, HADCNet can be flexibly incorporated into existing backbone networks for better performance, e.g., combining HADC with TransUnet and SwinUnet, respectively, leads to 3.28% and 2.53% Dice score improvements.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03342-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03342-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

医学图像分割是计算机辅助诊断技术的关键组成部分。在过去的几年里,基于u型架构的层次模型已经成为主流方法,但是由于丢失了详细的特征,这种方法往往不能提供准确的结果。为了解决这个问题,本文提出了一个分层上升的密集连接网络,称为HADCNet,以在分层组织的网络中捕获局部短距离和全局远程病理特征,以获得更准确的分割。首先,HADCNet设计了一个具有多路径注意门(MAG)的跨尺度上升密集连接结构,以实现全局病理特征的全尺度相互作用。然后,引入空间信道重构单元(SRU和CRU)来减少冗余计算并促进代表性特征的学习。最后,对多尺度输出进行聚合,形成最终成像。大量实验表明,我们的方法在Synapse数据集(用于多器官分割)上实现了84.45%的平均DSC和17.55 mm的HD95,在ACDC(用于心脏诊断)和ISIC2018数据集(用于病变分割)上也具有同样令人印象深刻的性能。此外,HADCNet可以灵活地整合到现有的骨干网中,以获得更好的性能,例如,将HADC与TransUnet和SwinUnet分别结合,可以使Dice得分提高3.28%和2.53%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HADCN: a hierarchical ascending densely connected network for enhanced medical image segmentation.

Medical image segmentation is a key component in computer-aided diagnostic technology. In the past few years, the U-shaped architecture-based hierarchical model has become the mainstream approach, which however often fails to provide accurate results due to the loss of detailed features. To address this issue, this paper proposes a hierarchical ascending densely connected network, called HADCNet, to capture both local short-range and global long-range pathological features in a hierarchically organized network for more accurate segmentation. First, HADCNet devises a cross-scale ascending densely connected structure with a multi-path attention gate (MAG) to achieve full-scale interaction of global pathological features. Then, spatial-channel reconstruction units (called SRU and CRU) are introduced to decrease redundant computation and facilitate representative feature learning. Finally, multi-scale outputs are aggregated for final imaging. Extensive experiments demonstrate that our method achieves an average DSC of 84.45% and HD95 of 17.55 mm on the Synapse dataset (for multi-organ segmentation), with a similarly impressive performance on the ACDC (for cardiac diagnosis) and ISIC2018 datasets (for lesion segmentation). Additionally, HADCNet can be flexibly incorporated into existing backbone networks for better performance, e.g., combining HADC with TransUnet and SwinUnet, respectively, leads to 3.28% and 2.53% Dice score improvements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信