阿特拉津通过mirna和能量感应途径对多巴胺能系统的神经毒性作用。

IF 4.6 2区 医学 Q1 NEUROSCIENCES
Molecular Neurobiology Pub Date : 2025-07-01 Epub Date: 2025-03-14 DOI:10.1007/s12035-025-04822-8
Xiaojuan Chen, Xiaomeng Hu, Hongzhan Liu, Jinyi He, Yanshu Li, Xiaofeng Zhang
{"title":"阿特拉津通过mirna和能量感应途径对多巴胺能系统的神经毒性作用。","authors":"Xiaojuan Chen, Xiaomeng Hu, Hongzhan Liu, Jinyi He, Yanshu Li, Xiaofeng Zhang","doi":"10.1007/s12035-025-04822-8","DOIUrl":null,"url":null,"abstract":"<p><p>Atrazine (ATR, 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is a globally prevalent herbicide known to induce dopaminergic neurotoxicity at high concentrations. MicroRNAs (miRNAs), pivotal in regulating gene expression post-transcriptionally, play essential roles in neuronal differentiation, proliferation, and apoptosis. This study investigates the effects of ATR on the dopaminergic system and behavioral responses in rats, with a particular focus on critical dopaminergic proteins such as tyrosine hydroxylase (TH), nuclear receptor related-1 protein (NURR1), and α-synuclein. The results reveal that ATR exposure significantly reduces the expression of TH and NURR1, while elevating levels of α-synuclein. Through miRNA sequencing and proteomic analysis, we identify alterations in miRNA and protein profiles that are intricately linked to the development of the dopaminergic system. Notably, treatment with ATR results in a marked increase in AMPK levels concurrent with a decrease in miR-322-5p. The differentially expressed genes associated with ATR exposure primarily influence the dopaminergic system by engaging in critical pathways such as AMPK, mTOR, autophagy, FoxO, and HIPPO. This study underscores the neurotoxic impact of ATR on the dopaminergic system via miRNA regulatory mechanisms and energy-sensing pathways, including AMPK and SIRT1, providing a molecular foundation for developing strategies to prevent and treat neurotoxicity induced by ATR exposure.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"9018-9030"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neurotoxic Effects of Atrazine on Dopaminergic System via miRNAs and Energy-Sensing Pathways.\",\"authors\":\"Xiaojuan Chen, Xiaomeng Hu, Hongzhan Liu, Jinyi He, Yanshu Li, Xiaofeng Zhang\",\"doi\":\"10.1007/s12035-025-04822-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atrazine (ATR, 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is a globally prevalent herbicide known to induce dopaminergic neurotoxicity at high concentrations. MicroRNAs (miRNAs), pivotal in regulating gene expression post-transcriptionally, play essential roles in neuronal differentiation, proliferation, and apoptosis. This study investigates the effects of ATR on the dopaminergic system and behavioral responses in rats, with a particular focus on critical dopaminergic proteins such as tyrosine hydroxylase (TH), nuclear receptor related-1 protein (NURR1), and α-synuclein. The results reveal that ATR exposure significantly reduces the expression of TH and NURR1, while elevating levels of α-synuclein. Through miRNA sequencing and proteomic analysis, we identify alterations in miRNA and protein profiles that are intricately linked to the development of the dopaminergic system. Notably, treatment with ATR results in a marked increase in AMPK levels concurrent with a decrease in miR-322-5p. The differentially expressed genes associated with ATR exposure primarily influence the dopaminergic system by engaging in critical pathways such as AMPK, mTOR, autophagy, FoxO, and HIPPO. This study underscores the neurotoxic impact of ATR on the dopaminergic system via miRNA regulatory mechanisms and energy-sensing pathways, including AMPK and SIRT1, providing a molecular foundation for developing strategies to prevent and treat neurotoxicity induced by ATR exposure.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"9018-9030\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-025-04822-8\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04822-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

阿特拉津(ATR, 2-氯-4-乙基氨基-6-异丙基氨基-1,3,5-三嗪)是一种全球普遍使用的除草剂,已知在高浓度时可引起多巴胺能神经毒性。MicroRNAs (miRNAs)是调控基因转录后表达的关键,在神经元分化、增殖和凋亡中发挥重要作用。本研究探讨ATR对大鼠多巴胺能系统和行为反应的影响,特别关注酪氨酸羟化酶(TH)、核受体相关-1蛋白(NURR1)和α-突触核蛋白等关键多巴胺能蛋白。结果表明,ATR暴露显著降低TH和NURR1的表达,同时升高α-synuclein的水平。通过miRNA测序和蛋白质组学分析,我们确定了miRNA和蛋白质谱的变化,这些变化与多巴胺能系统的发育有着复杂的联系。值得注意的是,ATR治疗导致AMPK水平显著升高,同时miR-322-5p降低。与ATR暴露相关的差异表达基因主要通过参与AMPK、mTOR、自噬、FoxO和HIPPO等关键通路来影响多巴胺能系统。本研究强调了ATR通过miRNA调控机制和能量感应通路(包括AMPK和SIRT1)对多巴胺能系统的神经毒性影响,为制定预防和治疗ATR暴露诱导的神经毒性策略提供了分子基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neurotoxic Effects of Atrazine on Dopaminergic System via miRNAs and Energy-Sensing Pathways.

Atrazine (ATR, 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is a globally prevalent herbicide known to induce dopaminergic neurotoxicity at high concentrations. MicroRNAs (miRNAs), pivotal in regulating gene expression post-transcriptionally, play essential roles in neuronal differentiation, proliferation, and apoptosis. This study investigates the effects of ATR on the dopaminergic system and behavioral responses in rats, with a particular focus on critical dopaminergic proteins such as tyrosine hydroxylase (TH), nuclear receptor related-1 protein (NURR1), and α-synuclein. The results reveal that ATR exposure significantly reduces the expression of TH and NURR1, while elevating levels of α-synuclein. Through miRNA sequencing and proteomic analysis, we identify alterations in miRNA and protein profiles that are intricately linked to the development of the dopaminergic system. Notably, treatment with ATR results in a marked increase in AMPK levels concurrent with a decrease in miR-322-5p. The differentially expressed genes associated with ATR exposure primarily influence the dopaminergic system by engaging in critical pathways such as AMPK, mTOR, autophagy, FoxO, and HIPPO. This study underscores the neurotoxic impact of ATR on the dopaminergic system via miRNA regulatory mechanisms and energy-sensing pathways, including AMPK and SIRT1, providing a molecular foundation for developing strategies to prevent and treat neurotoxicity induced by ATR exposure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Neurobiology
Molecular Neurobiology 医学-神经科学
CiteScore
9.00
自引率
2.00%
发文量
480
审稿时长
1 months
期刊介绍: Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信