IF 3.2 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Setareh Javanmardi, Farshad Moradpour, Mojgan Veisi, Neda Omidian, Rasoul Kavyannejad
{"title":"Effects of a mitochondrial calcium uniporter and P-selectin inhibitors on neural injury induced by global cerebral ischemia-reperfusion in male rats.","authors":"Setareh Javanmardi, Farshad Moradpour, Mojgan Veisi, Neda Omidian, Rasoul Kavyannejad","doi":"10.1007/s11011-025-01570-5","DOIUrl":null,"url":null,"abstract":"<p><p>Neural injury following ischemia-reperfusion (I/R) is induced by multiple pathophysiological pathways. This study aimed to use mitochondrial calcium channel and p-selectin inhibitors to weaken these pathways. One hundred and two rats were randomly divided into six groups. In the sham group, cerebral I/R induction and drug intervention were not performed. In the I/R group, cerebral I/R induction was induced. In the RR + FCN group, animals received only ruthenium red (RR) and fucoidan (FCN) intraperitoneally without I/R induction. In the I/R + RR group, animals received RR during the cerebral I/R period. In the I/R + FCN group, FCN was administered along with cerebral I/R. In the I/R +(RR + FCN) group, animals exposed to cerebral I/R received a combination of RR and FCN simultaneously. The shuttle box and new object tests were used to assess learning and memory. The superoxide dismutase (SOD), malondialdehyde (MDA), interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) levels in the hippocampus were measured. Neuronal death in the hippocampal CA1 area was assessed via hematoxylin-eosin staining. FCN and RR significantly decreased the tissue MDA, IL-1β, TNF-α levels while increased the SOD level. These inhibitors significantly reduced learning disorders and cerebral edema following I/R. The rate of neuronal death was significantly lower in each of the receiving RR and FCN groups. This study revealed that the use of FCN and RR significantly attenuated the pathways associated with oxidative stress and inflammation as well as neuronal death following cerebral I/R, thereby reducing learning and memory impairments. The effects of neuroprotection were further determined when two inhibitors were used simultaneously. HIGHLIGHTS: Cerebral ischemia-reperfusion is associated with many neurological, sensory and motor defects. Multiple pathways of neural pathophysiology are activated during cerebral ischemia-reperfusion. The Administration of ruthenium and fucoidan weakens inflammatory pathways, oxidative stress, and learning dysfunctions caused by cerebral ischemia and reperfusion. Stronger Neuroprotective effects were observed during the simultaneous administration of ruthenium and fucoidan.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":"40 3","pages":"150"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-025-01570-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

缺血再灌注(I/R)后的神经损伤是由多种病理生理途径诱发的。本研究旨在利用线粒体钙通道和 p-选择素抑制剂来削弱这些途径。122 只大鼠被随机分为六组。假组不进行脑I/R诱导和药物干预。I/R组诱导脑I/R。RR + FCN组仅腹腔注射钌红(RR)和褐藻糖胶(FCN),不进行I/R诱导。在I/R + RR组中,动物在脑I/R期间接受RR。在I/R + FCN组中,FCN与脑I/R同时给药。在I/R +(RR + FCN)组中,暴露于脑I/R的动物同时接受RR和FCN的组合治疗。穿梭箱测试和新物体测试用于评估学习和记忆能力。海马中的超氧化物歧化酶(SOD)、丙二醛(MDA)、白细胞介素-1β(IL-1β)和肿瘤坏死因子-α(TNF-α)水平被测定。海马 CA1 区的神经元死亡通过苏木精-伊红染色进行评估。FCN和RR能明显降低组织中的MDA、IL-1β和TNF-α水平,同时提高SOD水平。这些抑制剂能明显减轻学习障碍和I/R后的脑水肿。接受 RR 和 FCN 治疗组的神经元死亡率均明显降低。这项研究表明,使用 FCN 和 RR 能明显减轻氧化应激和炎症的相关途径以及脑 I/R 后的神经元死亡,从而减轻学习和记忆障碍。同时使用两种抑制剂还能进一步确定神经保护的效果。亮点脑缺血再灌注与许多神经、感觉和运动缺陷有关。在脑缺血再灌注过程中,神经病理生理学的多种途径被激活。服用钌和褐藻糖胶可削弱由脑缺血再灌注引起的炎症通路、氧化应激和学习功能障碍。在同时服用钌和褐藻糖胶期间,观察到了更强的神经保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of a mitochondrial calcium uniporter and P-selectin inhibitors on neural injury induced by global cerebral ischemia-reperfusion in male rats.

Neural injury following ischemia-reperfusion (I/R) is induced by multiple pathophysiological pathways. This study aimed to use mitochondrial calcium channel and p-selectin inhibitors to weaken these pathways. One hundred and two rats were randomly divided into six groups. In the sham group, cerebral I/R induction and drug intervention were not performed. In the I/R group, cerebral I/R induction was induced. In the RR + FCN group, animals received only ruthenium red (RR) and fucoidan (FCN) intraperitoneally without I/R induction. In the I/R + RR group, animals received RR during the cerebral I/R period. In the I/R + FCN group, FCN was administered along with cerebral I/R. In the I/R +(RR + FCN) group, animals exposed to cerebral I/R received a combination of RR and FCN simultaneously. The shuttle box and new object tests were used to assess learning and memory. The superoxide dismutase (SOD), malondialdehyde (MDA), interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) levels in the hippocampus were measured. Neuronal death in the hippocampal CA1 area was assessed via hematoxylin-eosin staining. FCN and RR significantly decreased the tissue MDA, IL-1β, TNF-α levels while increased the SOD level. These inhibitors significantly reduced learning disorders and cerebral edema following I/R. The rate of neuronal death was significantly lower in each of the receiving RR and FCN groups. This study revealed that the use of FCN and RR significantly attenuated the pathways associated with oxidative stress and inflammation as well as neuronal death following cerebral I/R, thereby reducing learning and memory impairments. The effects of neuroprotection were further determined when two inhibitors were used simultaneously. HIGHLIGHTS: Cerebral ischemia-reperfusion is associated with many neurological, sensory and motor defects. Multiple pathways of neural pathophysiology are activated during cerebral ischemia-reperfusion. The Administration of ruthenium and fucoidan weakens inflammatory pathways, oxidative stress, and learning dysfunctions caused by cerebral ischemia and reperfusion. Stronger Neuroprotective effects were observed during the simultaneous administration of ruthenium and fucoidan.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolic brain disease
Metabolic brain disease 医学-内分泌学与代谢
CiteScore
5.90
自引率
5.60%
发文量
248
审稿时长
6-12 weeks
期刊介绍: Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信