新型噻唑-吡唑类似物的合成:分子模拟、抗增殖/抗病毒活性和ADME研究

IF 3.3 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hind A. Siddiq, Mohammed A. Imam, Shaker T. Alsharif, Roba M. S. Attar, Renad Almughathawi, Nadiyah M. Alshammari, Nuha M. Halawani, Nashwa M. El-Metwaly
{"title":"新型噻唑-吡唑类似物的合成:分子模拟、抗增殖/抗病毒活性和ADME研究","authors":"Hind A. Siddiq,&nbsp;Mohammed A. Imam,&nbsp;Shaker T. Alsharif,&nbsp;Roba M. S. Attar,&nbsp;Renad Almughathawi,&nbsp;Nadiyah M. Alshammari,&nbsp;Nuha M. Halawani,&nbsp;Nashwa M. El-Metwaly","doi":"10.1111/cbdd.70090","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Twelve thiazole-pyrazole analogues <b>4</b>, <b>6</b>, and <b>8</b> were synthesized by introducing various pyrazole systems into the core, 2-((4-acetylphenyl)amino)-4-methylthiazole (<b>2</b>), through many synthetic approaches. The density functional theory (DFT) study of the synthesized analogues revealed coincided configurations of their highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO), except for the nitro derivatives, in which the intramolecular charge-transfer (CT) may be denoted as π → π* and <i>n</i> → π*. In addition, the in vitro antiproliferative efficacy towards some cancer cell lines was examined (Panc-1, HT-29, MCF-7) and the non-cancerous (WI-38), using Dasatinib (Reference). The analogues <b>4c</b> and <b>4d</b> demonstrated the most potent anticancer effect, particularly against Panc-1 and MCF-7 cells. Moreover, the antiviral activity against H5N1, using a plaque reduction assay, showed that analogue <b>6a</b> exhibited the most potent antiviral activity (100% inhibition and TC<sub>50</sub> = 61 μg/μL), comparable to the reference drug amantadine (TC<sub>50</sub> = 72 μg/μL, 100% inhibition). Furthermore, the molecular docking disclosed that the analogues exhibited a range of interactions, such as H-bonding and π-π stacking, with binding affinities between −4.8558 and − 8.3673 kcal/mol. Additionally, the SwissADME predictions indicated that the synthesized analogues possess promising drug-like characteristics, but analogues <b>4a–d</b> and <b>8c</b> demonstrated inadequate solubility and bioavailability, which restricts their use as viable oral medications.</p>\n </div>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"105 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of New Thiazole-Pyrazole Analogues: Molecular Modelling, Antiproliferative/Antiviral Activities, and ADME Studies\",\"authors\":\"Hind A. Siddiq,&nbsp;Mohammed A. Imam,&nbsp;Shaker T. Alsharif,&nbsp;Roba M. S. Attar,&nbsp;Renad Almughathawi,&nbsp;Nadiyah M. Alshammari,&nbsp;Nuha M. Halawani,&nbsp;Nashwa M. El-Metwaly\",\"doi\":\"10.1111/cbdd.70090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Twelve thiazole-pyrazole analogues <b>4</b>, <b>6</b>, and <b>8</b> were synthesized by introducing various pyrazole systems into the core, 2-((4-acetylphenyl)amino)-4-methylthiazole (<b>2</b>), through many synthetic approaches. The density functional theory (DFT) study of the synthesized analogues revealed coincided configurations of their highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO), except for the nitro derivatives, in which the intramolecular charge-transfer (CT) may be denoted as π → π* and <i>n</i> → π*. In addition, the in vitro antiproliferative efficacy towards some cancer cell lines was examined (Panc-1, HT-29, MCF-7) and the non-cancerous (WI-38), using Dasatinib (Reference). The analogues <b>4c</b> and <b>4d</b> demonstrated the most potent anticancer effect, particularly against Panc-1 and MCF-7 cells. Moreover, the antiviral activity against H5N1, using a plaque reduction assay, showed that analogue <b>6a</b> exhibited the most potent antiviral activity (100% inhibition and TC<sub>50</sub> = 61 μg/μL), comparable to the reference drug amantadine (TC<sub>50</sub> = 72 μg/μL, 100% inhibition). Furthermore, the molecular docking disclosed that the analogues exhibited a range of interactions, such as H-bonding and π-π stacking, with binding affinities between −4.8558 and − 8.3673 kcal/mol. Additionally, the SwissADME predictions indicated that the synthesized analogues possess promising drug-like characteristics, but analogues <b>4a–d</b> and <b>8c</b> demonstrated inadequate solubility and bioavailability, which restricts their use as viable oral medications.</p>\\n </div>\",\"PeriodicalId\":143,\"journal\":{\"name\":\"Chemical Biology & Drug Design\",\"volume\":\"105 3\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Biology & Drug Design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70090\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70090","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

以2-((4-乙酰苯基)氨基)-4-甲基噻唑(2)为核心,通过多种合成方法,引入不同的吡唑体系,合成了12个噻唑-吡唑类似物4,6和8。对合成的类似物进行密度泛函数(DFT)研究发现,除了硝基衍生物的分子内电荷转移(CT)可以表示为π→π*和n→π*外,它们的最高占位轨道和最低未占位轨道(HOMO和LUMO)的构型一致。此外,采用达沙替尼(文献)对部分癌细胞系(Panc-1、HT-29、MCF-7)和非癌细胞系(WI-38)进行体外抗增殖效果检测。类似物4c和4d显示出最有效的抗癌作用,特别是对Panc-1和MCF-7细胞。此外,利用空斑减少实验对H5N1病毒的抗病毒活性表明,类似物6a表现出最有效的抗病毒活性(100%抑制,TC50 = 61 μL),与参比药物金刚烷胺(TC50 = 72 μg/μL, 100%抑制)相当。此外,分子对接揭示了类似物表现出一系列相互作用,如h键和π-π堆叠,结合亲和力在−4.8558和−8.3673 kcal/mol之间。此外,SwissADME预测表明,合成的类似物具有类似药物的特性,但类似物4a-d和8c的溶解度和生物利用度不足,这限制了它们作为可行的口服药物的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis of New Thiazole-Pyrazole Analogues: Molecular Modelling, Antiproliferative/Antiviral Activities, and ADME Studies

Synthesis of New Thiazole-Pyrazole Analogues: Molecular Modelling, Antiproliferative/Antiviral Activities, and ADME Studies

Twelve thiazole-pyrazole analogues 4, 6, and 8 were synthesized by introducing various pyrazole systems into the core, 2-((4-acetylphenyl)amino)-4-methylthiazole (2), through many synthetic approaches. The density functional theory (DFT) study of the synthesized analogues revealed coincided configurations of their highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO), except for the nitro derivatives, in which the intramolecular charge-transfer (CT) may be denoted as π → π* and n → π*. In addition, the in vitro antiproliferative efficacy towards some cancer cell lines was examined (Panc-1, HT-29, MCF-7) and the non-cancerous (WI-38), using Dasatinib (Reference). The analogues 4c and 4d demonstrated the most potent anticancer effect, particularly against Panc-1 and MCF-7 cells. Moreover, the antiviral activity against H5N1, using a plaque reduction assay, showed that analogue 6a exhibited the most potent antiviral activity (100% inhibition and TC50 = 61 μg/μL), comparable to the reference drug amantadine (TC50 = 72 μg/μL, 100% inhibition). Furthermore, the molecular docking disclosed that the analogues exhibited a range of interactions, such as H-bonding and π-π stacking, with binding affinities between −4.8558 and − 8.3673 kcal/mol. Additionally, the SwissADME predictions indicated that the synthesized analogues possess promising drug-like characteristics, but analogues 4a–d and 8c demonstrated inadequate solubility and bioavailability, which restricts their use as viable oral medications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Biology & Drug Design
Chemical Biology & Drug Design 医学-生化与分子生物学
CiteScore
5.10
自引率
3.30%
发文量
164
审稿时长
4.4 months
期刊介绍: Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信