纳米盘脂质的性质影响基于片段的药物发现结果

IF 3.3 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tim G. J. Knetsch, Henri van Son, Masakazu Kobayashi, Marcellus Ubbink
{"title":"纳米盘脂质的性质影响基于片段的药物发现结果","authors":"Tim G. J. Knetsch,&nbsp;Henri van Son,&nbsp;Masakazu Kobayashi,&nbsp;Marcellus Ubbink","doi":"10.1111/cbdd.70080","DOIUrl":null,"url":null,"abstract":"<p>Membrane proteins (MPs) are important yet challenging targets for drug discovery. MPs can be reconstituted in protein-lipid Nanodiscs (NDs), which resemble the native membrane environment. Drug-membrane interactions can affect the apparent binding stoichiometry and affinity, as well as the kinetics of ligands for a particular target, which is important for the extrapolation to pharmacokinetic studies. To investigate the role of the membrane, we have applied fragment-based drug discovery (FBDD) methods to cytochrome P450 3A4 (CYP3A4), reconstituted in NDs composed of different phosphocholine lipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), or 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC). Surface plasmon resonance screening of fragments and marketed drugs revealed extensive binding to the empty ND, correlating with analyte hydrophobicity, and the binding was critically dependent on ND lipid composition. POPC NDs showed much higher binding of fragments than DMPC and DPhPC NDs, resulting in a lower hit rate for CYP3A4 in POPC NDs, which demonstrated that the choice of the ND lipid is crucial to the outcome of a screen. The number of binders that were rejected based on atypical binding kinetics was lower for monomeric CYP3A4 in NDs than for non-native oligomeric CYP3A4 without the ND. Several fragments were exclusively identified as hits for CYP3A4 in the presence of the ND membrane. It is concluded that the nature of the ND is a critical factor for fragment screening of membrane proteins.</p>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"105 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cbdd.70080","citationCount":"0","resultStr":"{\"title\":\"The Nature of Nanodisc Lipids Influences Fragment-Based Drug Discovery Results\",\"authors\":\"Tim G. J. Knetsch,&nbsp;Henri van Son,&nbsp;Masakazu Kobayashi,&nbsp;Marcellus Ubbink\",\"doi\":\"10.1111/cbdd.70080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Membrane proteins (MPs) are important yet challenging targets for drug discovery. MPs can be reconstituted in protein-lipid Nanodiscs (NDs), which resemble the native membrane environment. Drug-membrane interactions can affect the apparent binding stoichiometry and affinity, as well as the kinetics of ligands for a particular target, which is important for the extrapolation to pharmacokinetic studies. To investigate the role of the membrane, we have applied fragment-based drug discovery (FBDD) methods to cytochrome P450 3A4 (CYP3A4), reconstituted in NDs composed of different phosphocholine lipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), or 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC). Surface plasmon resonance screening of fragments and marketed drugs revealed extensive binding to the empty ND, correlating with analyte hydrophobicity, and the binding was critically dependent on ND lipid composition. POPC NDs showed much higher binding of fragments than DMPC and DPhPC NDs, resulting in a lower hit rate for CYP3A4 in POPC NDs, which demonstrated that the choice of the ND lipid is crucial to the outcome of a screen. The number of binders that were rejected based on atypical binding kinetics was lower for monomeric CYP3A4 in NDs than for non-native oligomeric CYP3A4 without the ND. Several fragments were exclusively identified as hits for CYP3A4 in the presence of the ND membrane. It is concluded that the nature of the ND is a critical factor for fragment screening of membrane proteins.</p>\",\"PeriodicalId\":143,\"journal\":{\"name\":\"Chemical Biology & Drug Design\",\"volume\":\"105 3\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cbdd.70080\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Biology & Drug Design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70080\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70080","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

膜蛋白(MPs)是药物发现的重要而又具有挑战性的靶点。MPs可以在蛋白质-脂质纳米盘(NDs)中重建,类似于天然膜环境。药物-膜相互作用可以影响表观结合化学计量学和亲和力,以及配体对特定靶标的动力学,这对于药代动力学研究的外推是重要的。为了研究膜的作用,我们应用基于片段的药物发现(FBDD)方法对细胞色素P450 3A4 (CYP3A4)进行了研究,该细胞色素在不同的磷脂脂质组成的ndds中重组:1-棕榈酰-2-油基- n-甘油基-3-甘油基-3-甘油基-3-磷脂胆碱(DMPC), 1,2-二棕榈酰磷脂酰胆碱(DPPC)或1,2-二phytanyl - n-甘油基-3-磷脂胆碱(DPhPC)。碎片和上市药物的表面等离子体共振筛选显示与空ND广泛结合,与分析物疏水性相关,并且这种结合严重依赖于ND脂质组成。与DMPC和DPhPC NDs相比,POPC NDs显示出更高的片段结合率,导致POPC NDs中CYP3A4的命中率较低,这表明ND脂质的选择对筛选结果至关重要。基于非典型结合动力学,NDs中单体CYP3A4被拒绝的结合物数量低于没有ND的非天然低聚CYP3A4。在ND膜存在的情况下,有几个片段被专门鉴定为CYP3A4的命中。因此,ND的性质是膜蛋白片段筛选的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Nature of Nanodisc Lipids Influences Fragment-Based Drug Discovery Results

The Nature of Nanodisc Lipids Influences Fragment-Based Drug Discovery Results

Membrane proteins (MPs) are important yet challenging targets for drug discovery. MPs can be reconstituted in protein-lipid Nanodiscs (NDs), which resemble the native membrane environment. Drug-membrane interactions can affect the apparent binding stoichiometry and affinity, as well as the kinetics of ligands for a particular target, which is important for the extrapolation to pharmacokinetic studies. To investigate the role of the membrane, we have applied fragment-based drug discovery (FBDD) methods to cytochrome P450 3A4 (CYP3A4), reconstituted in NDs composed of different phosphocholine lipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), or 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC). Surface plasmon resonance screening of fragments and marketed drugs revealed extensive binding to the empty ND, correlating with analyte hydrophobicity, and the binding was critically dependent on ND lipid composition. POPC NDs showed much higher binding of fragments than DMPC and DPhPC NDs, resulting in a lower hit rate for CYP3A4 in POPC NDs, which demonstrated that the choice of the ND lipid is crucial to the outcome of a screen. The number of binders that were rejected based on atypical binding kinetics was lower for monomeric CYP3A4 in NDs than for non-native oligomeric CYP3A4 without the ND. Several fragments were exclusively identified as hits for CYP3A4 in the presence of the ND membrane. It is concluded that the nature of the ND is a critical factor for fragment screening of membrane proteins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Biology & Drug Design
Chemical Biology & Drug Design 医学-生化与分子生物学
CiteScore
5.10
自引率
3.30%
发文量
164
审稿时长
4.4 months
期刊介绍: Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信