生物启发的框架,实时碰撞检测与动态障碍物在混乱的室外环境中使用事件相机

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS
Meriem Ben Miled, Wenwen Liu, Yuanchang Liu
{"title":"生物启发的框架,实时碰撞检测与动态障碍物在混乱的室外环境中使用事件相机","authors":"Meriem Ben Miled,&nbsp;Wenwen Liu,&nbsp;Yuanchang Liu","doi":"10.1049/csy2.70006","DOIUrl":null,"url":null,"abstract":"<p>In the field of robotics and visual-based navigation, event cameras are gaining popularity due to their exceptional dynamic range, low power consumption, and rapid response capabilities. These neuromorphic devices facilitate the efficient detection and avoidance of fast moving obstacles, and address common limitations of traditional hardware. However, the majority of state-of-the-art event-based algorithms still rely on conventional computer vision strategies. The goal is to shift from the standard protocols for dynamic obstacle detection by taking inspiration from the time-computational paradigm of biological vision system. In this paper, the authors present an innovative framework inspired by a biological response mechanism triggered by approaching objects, enabling the perception and identification of potential collision threats. The method, validated through both simulation and real-world experimentation, charts a new path in the application of event cameras for dynamic obstacle detection and avoidance in autonomous unmanned aerial vehicles. When compared to conventional methods, the proposed approach demonstrates a success rate of 97% in detecting obstacles within real-world outdoor settings.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"7 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.70006","citationCount":"0","resultStr":"{\"title\":\"Bioinspired framework for real-time collision detection with dynamic obstacles in cluttered outdoor environments using event cameras\",\"authors\":\"Meriem Ben Miled,&nbsp;Wenwen Liu,&nbsp;Yuanchang Liu\",\"doi\":\"10.1049/csy2.70006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the field of robotics and visual-based navigation, event cameras are gaining popularity due to their exceptional dynamic range, low power consumption, and rapid response capabilities. These neuromorphic devices facilitate the efficient detection and avoidance of fast moving obstacles, and address common limitations of traditional hardware. However, the majority of state-of-the-art event-based algorithms still rely on conventional computer vision strategies. The goal is to shift from the standard protocols for dynamic obstacle detection by taking inspiration from the time-computational paradigm of biological vision system. In this paper, the authors present an innovative framework inspired by a biological response mechanism triggered by approaching objects, enabling the perception and identification of potential collision threats. The method, validated through both simulation and real-world experimentation, charts a new path in the application of event cameras for dynamic obstacle detection and avoidance in autonomous unmanned aerial vehicles. When compared to conventional methods, the proposed approach demonstrates a success rate of 97% in detecting obstacles within real-world outdoor settings.</p>\",\"PeriodicalId\":34110,\"journal\":{\"name\":\"IET Cybersystems and Robotics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.70006\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Cybersystems and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/csy2.70006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.70006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在机器人和基于视觉的导航领域,事件摄像机因其出色的动态范围、低功耗和快速响应能力而越来越受欢迎。这些神经形态装置有助于有效地检测和避免快速移动的障碍物,并解决传统硬件的常见限制。然而,大多数最先进的基于事件的算法仍然依赖于传统的计算机视觉策略。目标是通过从生物视觉系统的时间计算范式中汲取灵感,从标准协议转变为动态障碍物检测。在本文中,作者提出了一个创新的框架,该框架受接近物体触发的生物反应机制的启发,能够感知和识别潜在的碰撞威胁。该方法通过仿真和实际实验验证,为事件相机在自主无人机动态障碍物检测和避障中的应用开辟了新的道路。与传统方法相比,该方法在真实室外环境中检测障碍物的成功率为97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bioinspired framework for real-time collision detection with dynamic obstacles in cluttered outdoor environments using event cameras

Bioinspired framework for real-time collision detection with dynamic obstacles in cluttered outdoor environments using event cameras

In the field of robotics and visual-based navigation, event cameras are gaining popularity due to their exceptional dynamic range, low power consumption, and rapid response capabilities. These neuromorphic devices facilitate the efficient detection and avoidance of fast moving obstacles, and address common limitations of traditional hardware. However, the majority of state-of-the-art event-based algorithms still rely on conventional computer vision strategies. The goal is to shift from the standard protocols for dynamic obstacle detection by taking inspiration from the time-computational paradigm of biological vision system. In this paper, the authors present an innovative framework inspired by a biological response mechanism triggered by approaching objects, enabling the perception and identification of potential collision threats. The method, validated through both simulation and real-world experimentation, charts a new path in the application of event cameras for dynamic obstacle detection and avoidance in autonomous unmanned aerial vehicles. When compared to conventional methods, the proposed approach demonstrates a success rate of 97% in detecting obstacles within real-world outdoor settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信