具有记忆的AFS-FCM:一个具有可解释性的空气质量多维预测模型

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zhen Peng;Wanquan Liu;Sung-Kwun Oh
{"title":"具有记忆的AFS-FCM:一个具有可解释性的空气质量多维预测模型","authors":"Zhen Peng;Wanquan Liu;Sung-Kwun Oh","doi":"10.1109/TBDATA.2024.3433467","DOIUrl":null,"url":null,"abstract":"In order to represent the influences of different semantics on targets and improve the prediction with interpretability ability for multi-dimensional time series, we integrate Axiomatic Fuzzy Set (AFS) and Fuzzy Cognitive Map (FCM) with memory for fuzzy knowledge representation and prediction in this paper. The AFS is used to extract semantics of concepts for fuzzy representation using data distribution. The FCM with memory is trained to model the influence relationships between different semantics of concepts and multiple targets based on multi-dimensional time series data. And a multi- dimensional learning algorithm of AFS-FCM with memory based on gradient descent is developed to investigate the influences of different semantics of concepts on multiple targets. Finally, we validate our model by comparing with other FCMs, intrinsic interpretable models and machine learning methods for prediction of air quality multidimensional time series data, and discuss the performance of AFS-FCM with different transformation functions. The model can not only predict air quality accurately, but also explicitly reveal the specific quantitative relationship of different semantics of meteorology on air quality.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 2","pages":"810-820"},"PeriodicalIF":7.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AFS-FCM With Memory: A Model for Air Quality Multi-Dimensional Prediction With Interpretability\",\"authors\":\"Zhen Peng;Wanquan Liu;Sung-Kwun Oh\",\"doi\":\"10.1109/TBDATA.2024.3433467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to represent the influences of different semantics on targets and improve the prediction with interpretability ability for multi-dimensional time series, we integrate Axiomatic Fuzzy Set (AFS) and Fuzzy Cognitive Map (FCM) with memory for fuzzy knowledge representation and prediction in this paper. The AFS is used to extract semantics of concepts for fuzzy representation using data distribution. The FCM with memory is trained to model the influence relationships between different semantics of concepts and multiple targets based on multi-dimensional time series data. And a multi- dimensional learning algorithm of AFS-FCM with memory based on gradient descent is developed to investigate the influences of different semantics of concepts on multiple targets. Finally, we validate our model by comparing with other FCMs, intrinsic interpretable models and machine learning methods for prediction of air quality multidimensional time series data, and discuss the performance of AFS-FCM with different transformation functions. The model can not only predict air quality accurately, but also explicitly reveal the specific quantitative relationship of different semantics of meteorology on air quality.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"11 2\",\"pages\":\"810-820\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10609506/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10609506/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

为了表达不同语义对目标的影响,提高对多维时间序列的可解释性预测能力,本文将公理模糊集(AFS)和模糊认知图(FCM)与记忆相结合,进行模糊知识表示和预测。AFS用于提取概念的语义,利用数据分布进行模糊表示。基于多维时间序列数据,训练具有记忆的FCM来建模概念的不同语义与多个目标之间的影响关系。为了研究概念的不同语义对多个目标的影响,提出了一种基于梯度下降的具有记忆的AFS-FCM的多维学习算法。最后,我们通过与其他fcm、内在可解释模型和机器学习方法进行比较,验证了我们的模型对空气质量多维时间序列数据的预测,并讨论了不同变换函数下AFS-FCM的性能。该模型不仅能准确预测空气质量,而且能清晰地揭示气象不同语义对空气质量的具体定量关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AFS-FCM With Memory: A Model for Air Quality Multi-Dimensional Prediction With Interpretability
In order to represent the influences of different semantics on targets and improve the prediction with interpretability ability for multi-dimensional time series, we integrate Axiomatic Fuzzy Set (AFS) and Fuzzy Cognitive Map (FCM) with memory for fuzzy knowledge representation and prediction in this paper. The AFS is used to extract semantics of concepts for fuzzy representation using data distribution. The FCM with memory is trained to model the influence relationships between different semantics of concepts and multiple targets based on multi-dimensional time series data. And a multi- dimensional learning algorithm of AFS-FCM with memory based on gradient descent is developed to investigate the influences of different semantics of concepts on multiple targets. Finally, we validate our model by comparing with other FCMs, intrinsic interpretable models and machine learning methods for prediction of air quality multidimensional time series data, and discuss the performance of AFS-FCM with different transformation functions. The model can not only predict air quality accurately, but also explicitly reveal the specific quantitative relationship of different semantics of meteorology on air quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信