基于查询感知的Hamming空间近似距离搜索方法

IF 7.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yang Song;Yu Gu;Min Huang;Ge Yu
{"title":"基于查询感知的Hamming空间近似距离搜索方法","authors":"Yang Song;Yu Gu;Min Huang;Ge Yu","doi":"10.1109/TBDATA.2024.3436636","DOIUrl":null,"url":null,"abstract":"The range search in Hamming space is to explore the binary vectors whose Hamming distances with a query vector are within a given searching threshold. It arises as the core component of many applications, such as image retrieval, pattern recognition, and machine learning. Existing searching methods in Hamming space require much pre-processing overhead, which are not suitable for processing multiple batches of incoming data in a short time. Moreover, significant pre-processing overhead can be a burden when the number of queries is relatively small. In this paper, we propose a query-aware method for the approximate range search in Hamming space with no pre-process. Specifically, to eliminate the impact of data skewness, we introduce JS-divergence to measure the divergence between data's distribution and query's distribution, and specially design a Query-Aware Dimension Partitioning (QADP) strategy to partition the dimensions into several subspaces according to the scales of given searching thresholds. In the subspaces, the candidates can be efficiently obtained by the basic Pigeonhole Principle and our proposed Anti-Pigeonhole Principle. Furthermore, a sampling strategy is designed to estimate the Hamming distance between the query vector and arbitrary binary vector to obtain the final approximate searching results among the candidates. Experimental results on four real-world datasets illustrate that, in comparison with benchmark methods, our method possesses the superior advantages on searching accuracy and efficiency. The proposed method can increase the searching efficiency up to nearly 16 times with high searching accuracy.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"11 2","pages":"848-860"},"PeriodicalIF":7.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Query-Aware Method for Approximate Range Search in Hamming Space\",\"authors\":\"Yang Song;Yu Gu;Min Huang;Ge Yu\",\"doi\":\"10.1109/TBDATA.2024.3436636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The range search in Hamming space is to explore the binary vectors whose Hamming distances with a query vector are within a given searching threshold. It arises as the core component of many applications, such as image retrieval, pattern recognition, and machine learning. Existing searching methods in Hamming space require much pre-processing overhead, which are not suitable for processing multiple batches of incoming data in a short time. Moreover, significant pre-processing overhead can be a burden when the number of queries is relatively small. In this paper, we propose a query-aware method for the approximate range search in Hamming space with no pre-process. Specifically, to eliminate the impact of data skewness, we introduce JS-divergence to measure the divergence between data's distribution and query's distribution, and specially design a Query-Aware Dimension Partitioning (QADP) strategy to partition the dimensions into several subspaces according to the scales of given searching thresholds. In the subspaces, the candidates can be efficiently obtained by the basic Pigeonhole Principle and our proposed Anti-Pigeonhole Principle. Furthermore, a sampling strategy is designed to estimate the Hamming distance between the query vector and arbitrary binary vector to obtain the final approximate searching results among the candidates. Experimental results on four real-world datasets illustrate that, in comparison with benchmark methods, our method possesses the superior advantages on searching accuracy and efficiency. The proposed method can increase the searching efficiency up to nearly 16 times with high searching accuracy.\",\"PeriodicalId\":13106,\"journal\":{\"name\":\"IEEE Transactions on Big Data\",\"volume\":\"11 2\",\"pages\":\"848-860\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Big Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10634235/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10634235/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

汉明空间中的范围搜索是对与查询向量汉明距离在给定搜索阈值内的二值向量进行搜索。它作为许多应用程序的核心组件出现,例如图像检索、模式识别和机器学习。现有的汉明空间搜索方法预处理开销较大,不适合在短时间内处理多批输入数据。此外,当查询数量相对较少时,显著的预处理开销可能成为负担。本文提出了一种无需预处理的Hamming空间近似距离搜索的查询感知方法。具体来说,为了消除数据偏度的影响,我们引入了JS-divergence来度量数据分布和查询分布之间的差异,并特别设计了查询感知维度分区(query - aware Dimension Partitioning, QADP)策略,根据给定搜索阈值的尺度将维度划分为几个子空间。在子空间中,利用基本鸽子洞原理和我们提出的反鸽子洞原理可以有效地获得候选子空间。此外,设计了一种采样策略来估计查询向量与任意二值向量之间的汉明距离,从而在候选向量中获得最终的近似搜索结果。在4个真实数据集上的实验结果表明,与基准方法相比,该方法在搜索精度和效率方面具有更大的优势。该方法可将搜索效率提高近16倍,且搜索精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Query-Aware Method for Approximate Range Search in Hamming Space
The range search in Hamming space is to explore the binary vectors whose Hamming distances with a query vector are within a given searching threshold. It arises as the core component of many applications, such as image retrieval, pattern recognition, and machine learning. Existing searching methods in Hamming space require much pre-processing overhead, which are not suitable for processing multiple batches of incoming data in a short time. Moreover, significant pre-processing overhead can be a burden when the number of queries is relatively small. In this paper, we propose a query-aware method for the approximate range search in Hamming space with no pre-process. Specifically, to eliminate the impact of data skewness, we introduce JS-divergence to measure the divergence between data's distribution and query's distribution, and specially design a Query-Aware Dimension Partitioning (QADP) strategy to partition the dimensions into several subspaces according to the scales of given searching thresholds. In the subspaces, the candidates can be efficiently obtained by the basic Pigeonhole Principle and our proposed Anti-Pigeonhole Principle. Furthermore, a sampling strategy is designed to estimate the Hamming distance between the query vector and arbitrary binary vector to obtain the final approximate searching results among the candidates. Experimental results on four real-world datasets illustrate that, in comparison with benchmark methods, our method possesses the superior advantages on searching accuracy and efficiency. The proposed method can increase the searching efficiency up to nearly 16 times with high searching accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.80
自引率
2.80%
发文量
114
期刊介绍: The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信