{"title":"卡坦量子计量学","authors":"Gabriele Fazio , Jiayu He , Matteo G.A. Paris","doi":"10.1016/j.physo.2025.100260","DOIUrl":null,"url":null,"abstract":"<div><div>We address the characterization of two-qubit gates, focusing on bounds to precision in the joint estimation of the three parameters that define their Cartan decomposition. We derive the optimal probe states that jointly maximize precision, minimize sloppiness, and eliminate quantum incompatibility. Additionally, we analyze the properties of the set of optimal probes and evaluate their robustness against noise.</div></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"23 ","pages":"Article 100260"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cartan quantum metrology\",\"authors\":\"Gabriele Fazio , Jiayu He , Matteo G.A. Paris\",\"doi\":\"10.1016/j.physo.2025.100260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We address the characterization of two-qubit gates, focusing on bounds to precision in the joint estimation of the three parameters that define their Cartan decomposition. We derive the optimal probe states that jointly maximize precision, minimize sloppiness, and eliminate quantum incompatibility. Additionally, we analyze the properties of the set of optimal probes and evaluate their robustness against noise.</div></div>\",\"PeriodicalId\":36067,\"journal\":{\"name\":\"Physics Open\",\"volume\":\"23 \",\"pages\":\"Article 100260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666032625000109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032625000109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
We address the characterization of two-qubit gates, focusing on bounds to precision in the joint estimation of the three parameters that define their Cartan decomposition. We derive the optimal probe states that jointly maximize precision, minimize sloppiness, and eliminate quantum incompatibility. Additionally, we analyze the properties of the set of optimal probes and evaluate their robustness against noise.