用Clark-Ocone公式表示布朗运动的局部时间

IF 1.4 Q2 MATHEMATICS, APPLIED
Allaoui Omar , Hadiri Sokaina , Sghir Aissa
{"title":"用Clark-Ocone公式表示布朗运动的局部时间","authors":"Allaoui Omar ,&nbsp;Hadiri Sokaina ,&nbsp;Sghir Aissa","doi":"10.1016/j.rinam.2025.100563","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mo>(</mo><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>B</mi></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>t</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>R</mi></mrow><mo>)</mo></mrow></math></span> be the local time of <span><math><mrow><mrow><mo>(</mo><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>t</mi><mo>≥</mo><mn>0</mn></mrow><mo>)</mo></mrow><mo>,</mo></mrow></math></span> the real-valued one-dimensional Brownian motion. In this paper, in case of <span><math><mrow><mi>g</mi><mo>,</mo></mrow></math></span> a strictly increasing and bijective function, we propose some integral representations of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>g</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> of the form: <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>t</mi></mrow></msubsup><mi>K</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></mrow><mi>d</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is a deterministic function and <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is a random function depending on <span><math><mi>t</mi></math></span> and <span><math><mrow><mi>F</mi><mo>,</mo></mrow></math></span> the cumulative distribution function of the standard normal distribution <span><math><mrow><mi>N</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> and some Brownian functionals with no Malliavin derivative. Our study is based on the case <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>B</mi></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span> An exact formula of the expectation <span><math><mrow><mi>E</mi><mrow><mo>[</mo><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>B</mi></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>]</mo></mrow></mrow></math></span> is given in this paper.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100563"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An integral representation of the local time of the Brownian motion via the Clark–Ocone formula\",\"authors\":\"Allaoui Omar ,&nbsp;Hadiri Sokaina ,&nbsp;Sghir Aissa\",\"doi\":\"10.1016/j.rinam.2025.100563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mo>(</mo><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>B</mi></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><mspace></mspace><mi>t</mi><mo>≥</mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>R</mi></mrow><mo>)</mo></mrow></math></span> be the local time of <span><math><mrow><mrow><mo>(</mo><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>,</mo><mspace></mspace><mi>t</mi><mo>≥</mo><mn>0</mn></mrow><mo>)</mo></mrow><mo>,</mo></mrow></math></span> the real-valued one-dimensional Brownian motion. In this paper, in case of <span><math><mrow><mi>g</mi><mo>,</mo></mrow></math></span> a strictly increasing and bijective function, we propose some integral representations of <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>g</mi><mrow><mo>(</mo><mi>B</mi><mo>)</mo></mrow></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo></mrow></math></span> of the form: <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>+</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>t</mi></mrow></msubsup><mi>K</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></mrow><mi>d</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>,</mo></mrow></math></span> where <span><math><mrow><mi>R</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is a deterministic function and <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is a random function depending on <span><math><mi>t</mi></math></span> and <span><math><mrow><mi>F</mi><mo>,</mo></mrow></math></span> the cumulative distribution function of the standard normal distribution <span><math><mrow><mi>N</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> and some Brownian functionals with no Malliavin derivative. Our study is based on the case <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>B</mi></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow><mo>.</mo></mrow></math></span> An exact formula of the expectation <span><math><mrow><mi>E</mi><mrow><mo>[</mo><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>B</mi></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow><mo>]</mo></mrow></mrow></math></span> is given in this paper.</div></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"26 \",\"pages\":\"Article 100563\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037425000275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设(LB(t,x),t≥0,x∈R)为实值一维布朗运动(Bt,t≥0)的局部时间。在g是严格递增双射函数的情况下,我们给出了Lg(B)(t,x)的一些积分表示,其形式为R(t,x)+∫0tK(t,x,Bs)dBs,其中R(t,x)是确定性函数,K(t,x,Bs)是依赖于t和F的随机函数,是标准正态分布N(0,1)的累积分布函数和一些无Malliavin导数的布朗泛函。我们的研究是基于案例LB(t,x)。本文给出了期望E[LB(t,x)]的精确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An integral representation of the local time of the Brownian motion via the Clark–Ocone formula
Let (LB(t,x),t0,xR) be the local time of (Bt,t0), the real-valued one-dimensional Brownian motion. In this paper, in case of g, a strictly increasing and bijective function, we propose some integral representations of Lg(B)(t,x), of the form: R(t,x)+0tK(t,x,Bs)dBs, where R(t,x) is a deterministic function and K(t,x,Bs) is a random function depending on t and F, the cumulative distribution function of the standard normal distribution N(0,1) and some Brownian functionals with no Malliavin derivative. Our study is based on the case LB(t,x). An exact formula of the expectation E[LB(t,x)] is given in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信