通过大偏差率函数的严格封装检测随机分岔

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Alexandra Blessing (Neamţu) , Alex Blumenthal , Maxime Breden , Maximilian Engel
{"title":"通过大偏差率函数的严格封装检测随机分岔","authors":"Alexandra Blessing (Neamţu) ,&nbsp;Alex Blumenthal ,&nbsp;Maxime Breden ,&nbsp;Maximilian Engel","doi":"10.1016/j.physd.2025.134617","DOIUrl":null,"url":null,"abstract":"<div><div>The main goal of this work is to provide a description of transitions from uniform to non-uniform snychronization in diffusions based on large deviation estimates for finite time Lyapunov exponents. These can be characterized in terms of moment Lyapunov exponents which are principal eigenvalues of the generator of the tilted (Feynman–Kac) semigroup. Using a computer assisted proof, we demonstrate how to determine these eigenvalues and investigate the rate function which is the Legendre–Fenchel transform of the moment Lyapunov function. We apply our results to two case studies: the pitchfork bifurcation and a two-dimensional toy model, also considering the transition to a positive asymptotic Lyapunov exponent.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"476 ","pages":"Article 134617"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting random bifurcations via rigorous enclosures of large deviations rate functions\",\"authors\":\"Alexandra Blessing (Neamţu) ,&nbsp;Alex Blumenthal ,&nbsp;Maxime Breden ,&nbsp;Maximilian Engel\",\"doi\":\"10.1016/j.physd.2025.134617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The main goal of this work is to provide a description of transitions from uniform to non-uniform snychronization in diffusions based on large deviation estimates for finite time Lyapunov exponents. These can be characterized in terms of moment Lyapunov exponents which are principal eigenvalues of the generator of the tilted (Feynman–Kac) semigroup. Using a computer assisted proof, we demonstrate how to determine these eigenvalues and investigate the rate function which is the Legendre–Fenchel transform of the moment Lyapunov function. We apply our results to two case studies: the pitchfork bifurcation and a two-dimensional toy model, also considering the transition to a positive asymptotic Lyapunov exponent.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"476 \",\"pages\":\"Article 134617\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016727892500096X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892500096X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的主要目标是基于有限时间李雅普诺夫指数的大偏差估计,提供扩散中从均匀同步到非均匀同步的过渡描述。这些可以用矩Lyapunov指数来表示,它是倾斜(Feynman-Kac)半群的产生子的主特征值。利用计算机辅助证明,我们演示了如何确定这些特征值,并研究了速率函数,即矩Lyapunov函数的legende - fenchel变换。我们将我们的结果应用于两个案例研究:干草叉分岔和二维玩具模型,也考虑到向正渐近Lyapunov指数的过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting random bifurcations via rigorous enclosures of large deviations rate functions
The main goal of this work is to provide a description of transitions from uniform to non-uniform snychronization in diffusions based on large deviation estimates for finite time Lyapunov exponents. These can be characterized in terms of moment Lyapunov exponents which are principal eigenvalues of the generator of the tilted (Feynman–Kac) semigroup. Using a computer assisted proof, we demonstrate how to determine these eigenvalues and investigate the rate function which is the Legendre–Fenchel transform of the moment Lyapunov function. We apply our results to two case studies: the pitchfork bifurcation and a two-dimensional toy model, also considering the transition to a positive asymptotic Lyapunov exponent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信