基于广义广义卷积的Cohen类时频分布:理论与应用

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Manjun Cui;Zhichao Zhang;Jie Han;Yunjie Chen;Chunzheng Cao
{"title":"基于广义广义卷积的Cohen类时频分布:理论与应用","authors":"Manjun Cui;Zhichao Zhang;Jie Han;Yunjie Chen;Chunzheng Cao","doi":"10.1109/OJSP.2025.3545337","DOIUrl":null,"url":null,"abstract":"The convolution type of the Cohen's class time-frequency distribution (CCTFD) is a useful and effective time-frequency analysis tool for additive noises jamming signals. However, it can't meet the requirement of high-performance denoising under low signal-to-noise ratio conditions. In this paper, we define the generalized metaplectic convolution-based Cohen's class time-frequency distribution (GMC-CCTFD) by replacing the traditional convolution operator in CCTFD with the generalized convolution operator of metaplectic transform (MT). This new definition leverages the high degrees of freedom and flexibility of MT, improving performance in non-stationary signal analysis. We then establish a fundamental theory about the GMC-CCTFD's essential properties. By integrating the Wiener filter principle with the time-frequency filtering mechanism of GMC-CCTFD, we design a least-squares adaptive filter in the Wigner distribution-MT domain. This allows us to achieve adaptive filtering denoising based on GMC-CCTFD, giving birth to the least-squares adaptive filter-based GMC-CCTFD. Furthermore, we conduct several examples and apply the proposed filtering method to real-world datasets, demonstrating its superior performance in noise suppression compared to some state-of-the-art methods.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"348-368"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10902015","citationCount":"0","resultStr":"{\"title\":\"Generalized Metaplectic Convolution-Based Cohen's Class Time-Frequency Distribution: Theory and Application\",\"authors\":\"Manjun Cui;Zhichao Zhang;Jie Han;Yunjie Chen;Chunzheng Cao\",\"doi\":\"10.1109/OJSP.2025.3545337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The convolution type of the Cohen's class time-frequency distribution (CCTFD) is a useful and effective time-frequency analysis tool for additive noises jamming signals. However, it can't meet the requirement of high-performance denoising under low signal-to-noise ratio conditions. In this paper, we define the generalized metaplectic convolution-based Cohen's class time-frequency distribution (GMC-CCTFD) by replacing the traditional convolution operator in CCTFD with the generalized convolution operator of metaplectic transform (MT). This new definition leverages the high degrees of freedom and flexibility of MT, improving performance in non-stationary signal analysis. We then establish a fundamental theory about the GMC-CCTFD's essential properties. By integrating the Wiener filter principle with the time-frequency filtering mechanism of GMC-CCTFD, we design a least-squares adaptive filter in the Wigner distribution-MT domain. This allows us to achieve adaptive filtering denoising based on GMC-CCTFD, giving birth to the least-squares adaptive filter-based GMC-CCTFD. Furthermore, we conduct several examples and apply the proposed filtering method to real-world datasets, demonstrating its superior performance in noise suppression compared to some state-of-the-art methods.\",\"PeriodicalId\":73300,\"journal\":{\"name\":\"IEEE open journal of signal processing\",\"volume\":\"6 \",\"pages\":\"348-368\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10902015\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10902015/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10902015/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

科恩类时频分布(CCTFD)的卷积型是分析加性噪声干扰信号的有效时频分析工具。然而,在低信噪比条件下,它不能满足高性能去噪的要求。本文通过用广义广义卷积变换的广义卷积算子(MT)代替广义广义卷积卷积中的传统卷积算子,定义了基于广义广义卷积的Cohen类时频分布(GMC-CCTFD)。这个新定义利用了MT的高度自由度和灵活性,提高了非平稳信号分析的性能。然后,我们建立了一个关于GMC-CCTFD基本性质的基本理论。将Wiener滤波原理与GMC-CCTFD的时频滤波机制相结合,设计了Wigner分布- mt域的最小二乘自适应滤波器。这使我们能够实现基于GMC-CCTFD的自适应滤波去噪,从而产生了基于最小二乘自适应滤波器的GMC-CCTFD。此外,我们进行了几个例子,并将所提出的滤波方法应用于实际数据集,与一些最先进的方法相比,证明了其在噪声抑制方面的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Metaplectic Convolution-Based Cohen's Class Time-Frequency Distribution: Theory and Application
The convolution type of the Cohen's class time-frequency distribution (CCTFD) is a useful and effective time-frequency analysis tool for additive noises jamming signals. However, it can't meet the requirement of high-performance denoising under low signal-to-noise ratio conditions. In this paper, we define the generalized metaplectic convolution-based Cohen's class time-frequency distribution (GMC-CCTFD) by replacing the traditional convolution operator in CCTFD with the generalized convolution operator of metaplectic transform (MT). This new definition leverages the high degrees of freedom and flexibility of MT, improving performance in non-stationary signal analysis. We then establish a fundamental theory about the GMC-CCTFD's essential properties. By integrating the Wiener filter principle with the time-frequency filtering mechanism of GMC-CCTFD, we design a least-squares adaptive filter in the Wigner distribution-MT domain. This allows us to achieve adaptive filtering denoising based on GMC-CCTFD, giving birth to the least-squares adaptive filter-based GMC-CCTFD. Furthermore, we conduct several examples and apply the proposed filtering method to real-world datasets, demonstrating its superior performance in noise suppression compared to some state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信