基于联苯的肿瘤PD-L1 PET显像小分子示踪剂的研制与评价

IF 2.5 4区 医学 Q3 CHEMISTRY, MEDICINAL
Nan Zhang , Junyi Zhu , Xin Hu , Yuxuan Zhou , Qianhui Wang , Shuyue Cai , Quan Xie , Ling Qiu , Gaochao Lv , Jianguo Lin
{"title":"基于联苯的肿瘤PD-L1 PET显像小分子示踪剂的研制与评价","authors":"Nan Zhang ,&nbsp;Junyi Zhu ,&nbsp;Xin Hu ,&nbsp;Yuxuan Zhou ,&nbsp;Qianhui Wang ,&nbsp;Shuyue Cai ,&nbsp;Quan Xie ,&nbsp;Ling Qiu ,&nbsp;Gaochao Lv ,&nbsp;Jianguo Lin","doi":"10.1016/j.bmcl.2025.130187","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate identification of programmed cell death ligand 1 (PD-L1) expression is crucial for anti-tumor immunotherapy. However, the heterogeneity of PD-L1 expression in tumors makes it challenging to detect by immunohistochemistry. In this study, we developed two novel PD-L1 small-molecule PET tracers, [<sup>18</sup>F]<strong>LGT-1</strong> and [<sup>18</sup>F]<strong>LGT-2</strong>, to enable the non-invasive and precise measurement of PD-L1 expression in tumors through PET imaging. The radiochemical yields for [<sup>18</sup>F]<strong>LGT-1</strong> and [<sup>18</sup>F]<strong>LGT-2</strong> were 12.54±2.73% and 10.54±2.21%, respectively, with both tracers exhibiting approximately 98% radiochemical purity and molar activities of 12.23±2.84 GBq/μmol and 11.41±1.47 GBq/μmol. Both tracers demonstrated good stability in PBS (pH 7.4) and mouse serum after 2 hours of incubation. In cellular uptake assays, [<sup>18</sup>F]<strong>LGT-1</strong> achieved a maximum uptake of 5.47±0.03 %AD at 4 hours, which could be significantly inhibited by the non-radioactive compound <strong>LGT-1</strong>. In contrast, [<sup>18</sup>F]<strong>LGT-2</strong> exhibited high non-specific uptake in tumor cells. PET imaging revealed that [<sup>18</sup>F]<strong>LGT-1</strong> quickly accumulated in tumors within 5 minutes, achieving an uptake of 1.48±0.15 %ID/mL, and maintained a stable level for 60 minutes, while [<sup>18</sup>F]<strong>LGT-2</strong> showed minimal tumor uptake. Additionally, [<sup>18</sup>F]<strong>LGT-1</strong> had significantly lower liver uptake compared to [<sup>18</sup>F]<strong>LGT-2</strong>. Despite the high uptake in non-target tissues for [<sup>18</sup>F]<strong>LGT-1</strong>, which complicates its application, this study provides new insights for developing novel PD-L1 small-molecule tracers, with further optimization of the tracers currently in progress.</div></div>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":"122 ","pages":"Article 130187"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and evaluation of biphenyl-based small-molecule radiotracers for PET imaging of PD-L1 in tumor\",\"authors\":\"Nan Zhang ,&nbsp;Junyi Zhu ,&nbsp;Xin Hu ,&nbsp;Yuxuan Zhou ,&nbsp;Qianhui Wang ,&nbsp;Shuyue Cai ,&nbsp;Quan Xie ,&nbsp;Ling Qiu ,&nbsp;Gaochao Lv ,&nbsp;Jianguo Lin\",\"doi\":\"10.1016/j.bmcl.2025.130187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate identification of programmed cell death ligand 1 (PD-L1) expression is crucial for anti-tumor immunotherapy. However, the heterogeneity of PD-L1 expression in tumors makes it challenging to detect by immunohistochemistry. In this study, we developed two novel PD-L1 small-molecule PET tracers, [<sup>18</sup>F]<strong>LGT-1</strong> and [<sup>18</sup>F]<strong>LGT-2</strong>, to enable the non-invasive and precise measurement of PD-L1 expression in tumors through PET imaging. The radiochemical yields for [<sup>18</sup>F]<strong>LGT-1</strong> and [<sup>18</sup>F]<strong>LGT-2</strong> were 12.54±2.73% and 10.54±2.21%, respectively, with both tracers exhibiting approximately 98% radiochemical purity and molar activities of 12.23±2.84 GBq/μmol and 11.41±1.47 GBq/μmol. Both tracers demonstrated good stability in PBS (pH 7.4) and mouse serum after 2 hours of incubation. In cellular uptake assays, [<sup>18</sup>F]<strong>LGT-1</strong> achieved a maximum uptake of 5.47±0.03 %AD at 4 hours, which could be significantly inhibited by the non-radioactive compound <strong>LGT-1</strong>. In contrast, [<sup>18</sup>F]<strong>LGT-2</strong> exhibited high non-specific uptake in tumor cells. PET imaging revealed that [<sup>18</sup>F]<strong>LGT-1</strong> quickly accumulated in tumors within 5 minutes, achieving an uptake of 1.48±0.15 %ID/mL, and maintained a stable level for 60 minutes, while [<sup>18</sup>F]<strong>LGT-2</strong> showed minimal tumor uptake. Additionally, [<sup>18</sup>F]<strong>LGT-1</strong> had significantly lower liver uptake compared to [<sup>18</sup>F]<strong>LGT-2</strong>. Despite the high uptake in non-target tissues for [<sup>18</sup>F]<strong>LGT-1</strong>, which complicates its application, this study provides new insights for developing novel PD-L1 small-molecule tracers, with further optimization of the tracers currently in progress.</div></div>\",\"PeriodicalId\":256,\"journal\":{\"name\":\"Bioorganic & Medicinal Chemistry Letters\",\"volume\":\"122 \",\"pages\":\"Article 130187\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic & Medicinal Chemistry Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960894X25000964\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960894X25000964","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

准确鉴定程序性细胞死亡配体1 (PD-L1)的表达对抗肿瘤免疫治疗至关重要。然而,肿瘤中PD-L1表达的异质性使得免疫组织化学检测具有挑战性。在本研究中,我们开发了两种新型的PD-L1小分子PET示踪剂[18F]LGT-1和[18F]LGT-2,通过PET成像实现肿瘤中PD-L1表达的无创、精确测量。[18F]LGT-1和[18F]LGT-2的放射化学产率分别为12.54±2.73%和10.54±2.21%,两种示踪剂的放射化学纯度约为98%,摩尔活性分别为12.23±2.84 GBq/μmol和11.41±1.47 GBq/μmol。两种示踪剂在PBS (pH 7.4)和小鼠血清中孵育2小时后均表现出良好的稳定性。在细胞摄取试验中,[18F]LGT-1在4小时内的最大摄食量为5.47±0.03% AD,非放射性化合物LGT-1可以显著抑制该摄食量。相反,[18F]LGT-2在肿瘤细胞中表现出高的非特异性摄取。PET显像显示[18F]LGT-1在5分钟内迅速积聚在肿瘤中,摄取量达到1.48±0.15% ID/mL,并维持60分钟稳定水平,而[18F]LGT-2肿瘤摄取极小。此外,与[18F]LGT-2相比,[18F]LGT-1的肝脏摄取显著降低。尽管[18F]LGT-1在非靶组织中的高吸收率使其应用复杂化,但本研究为开发新型PD-L1小分子示踪剂提供了新的见解,目前示踪剂的进一步优化正在进行中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Development and evaluation of biphenyl-based small-molecule radiotracers for PET imaging of PD-L1 in tumor

Development and evaluation of biphenyl-based small-molecule radiotracers for PET imaging of PD-L1 in tumor
Accurate identification of programmed cell death ligand 1 (PD-L1) expression is crucial for anti-tumor immunotherapy. However, the heterogeneity of PD-L1 expression in tumors makes it challenging to detect by immunohistochemistry. In this study, we developed two novel PD-L1 small-molecule PET tracers, [18F]LGT-1 and [18F]LGT-2, to enable the non-invasive and precise measurement of PD-L1 expression in tumors through PET imaging. The radiochemical yields for [18F]LGT-1 and [18F]LGT-2 were 12.54±2.73% and 10.54±2.21%, respectively, with both tracers exhibiting approximately 98% radiochemical purity and molar activities of 12.23±2.84 GBq/μmol and 11.41±1.47 GBq/μmol. Both tracers demonstrated good stability in PBS (pH 7.4) and mouse serum after 2 hours of incubation. In cellular uptake assays, [18F]LGT-1 achieved a maximum uptake of 5.47±0.03 %AD at 4 hours, which could be significantly inhibited by the non-radioactive compound LGT-1. In contrast, [18F]LGT-2 exhibited high non-specific uptake in tumor cells. PET imaging revealed that [18F]LGT-1 quickly accumulated in tumors within 5 minutes, achieving an uptake of 1.48±0.15 %ID/mL, and maintained a stable level for 60 minutes, while [18F]LGT-2 showed minimal tumor uptake. Additionally, [18F]LGT-1 had significantly lower liver uptake compared to [18F]LGT-2. Despite the high uptake in non-target tissues for [18F]LGT-1, which complicates its application, this study provides new insights for developing novel PD-L1 small-molecule tracers, with further optimization of the tracers currently in progress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
3.70%
发文量
463
审稿时长
27 days
期刊介绍: Bioorganic & Medicinal Chemistry Letters presents preliminary experimental or theoretical research results of outstanding significance and timeliness on all aspects of science at the interface of chemistry and biology and on major advances in drug design and development. The journal publishes articles in the form of communications reporting experimental or theoretical results of special interest, and strives to provide maximum dissemination to a large, international audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信