基于django的框架数据库,用于使用机器学习对配水网络进行泄漏检测

IF 8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Yiwei Xie , Mengze Gao , Fan Luo , Ao Zhou , Yunfeng Yang , Jian Hu , Wei Jiang , Yuanyao Ye
{"title":"基于django的框架数据库,用于使用机器学习对配水网络进行泄漏检测","authors":"Yiwei Xie ,&nbsp;Mengze Gao ,&nbsp;Fan Luo ,&nbsp;Ao Zhou ,&nbsp;Yunfeng Yang ,&nbsp;Jian Hu ,&nbsp;Wei Jiang ,&nbsp;Yuanyao Ye","doi":"10.1016/j.engappai.2025.110525","DOIUrl":null,"url":null,"abstract":"<div><div>Leakage in water supply pipe networks is a critical issue, with traditional detection methods being inefficient and error-prone. Acoustic-based leak detection often lacks standardized databases, limiting its effectiveness. This study proposes an integrated system using MySQL, Python, and Django for managing and analyzing acoustic leakage data. The system incorporates Variable Modal Decomposition (VMD), Wavelet Threshold Noise Reduction, Feature Extraction, and Support Vector Machine (SVM) for accurate leak detection. Experimentation on 413 labeled acoustic samples achieved classification accuracies of 96.1% (training set) and 97.4% (test set). This approach enhances detection precision and offers a scalable solution for real-time monitoring, with significant practical implications for improving water distribution system management and decision-making.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"149 ","pages":"Article 110525"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Django-based framework database for leakage detection using machine learning for water distribution networks\",\"authors\":\"Yiwei Xie ,&nbsp;Mengze Gao ,&nbsp;Fan Luo ,&nbsp;Ao Zhou ,&nbsp;Yunfeng Yang ,&nbsp;Jian Hu ,&nbsp;Wei Jiang ,&nbsp;Yuanyao Ye\",\"doi\":\"10.1016/j.engappai.2025.110525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Leakage in water supply pipe networks is a critical issue, with traditional detection methods being inefficient and error-prone. Acoustic-based leak detection often lacks standardized databases, limiting its effectiveness. This study proposes an integrated system using MySQL, Python, and Django for managing and analyzing acoustic leakage data. The system incorporates Variable Modal Decomposition (VMD), Wavelet Threshold Noise Reduction, Feature Extraction, and Support Vector Machine (SVM) for accurate leak detection. Experimentation on 413 labeled acoustic samples achieved classification accuracies of 96.1% (training set) and 97.4% (test set). This approach enhances detection precision and offers a scalable solution for real-time monitoring, with significant practical implications for improving water distribution system management and decision-making.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"149 \",\"pages\":\"Article 110525\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197625005251\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625005251","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

供水管网的泄漏是一个关键问题,传统的检测方法效率低下且容易出错。基于声学的泄漏检测通常缺乏标准化的数据库,限制了其有效性。本研究提出了一个使用MySQL、Python和Django的集成系统来管理和分析声泄漏数据。该系统结合了可变模态分解(VMD)、小波阈值降噪、特征提取和支持向量机(SVM)来精确检测泄漏。对413个带标签的声学样本进行实验,分类准确率分别为96.1%(训练集)和97.4%(测试集)。该方法提高了检测精度,为实时监测提供了可扩展的解决方案,对改善配水系统管理和决策具有重要的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Django-based framework database for leakage detection using machine learning for water distribution networks

Django-based framework database for leakage detection using machine learning for water distribution networks
Leakage in water supply pipe networks is a critical issue, with traditional detection methods being inefficient and error-prone. Acoustic-based leak detection often lacks standardized databases, limiting its effectiveness. This study proposes an integrated system using MySQL, Python, and Django for managing and analyzing acoustic leakage data. The system incorporates Variable Modal Decomposition (VMD), Wavelet Threshold Noise Reduction, Feature Extraction, and Support Vector Machine (SVM) for accurate leak detection. Experimentation on 413 labeled acoustic samples achieved classification accuracies of 96.1% (training set) and 97.4% (test set). This approach enhances detection precision and offers a scalable solution for real-time monitoring, with significant practical implications for improving water distribution system management and decision-making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信