A K M Fazlul Kobir Siam, Md. Asraful Sharker Nirob, Prayma Bishshash, Md Assaduzzaman, Apurba Ghosh, Sheak Rashed Haider Noori
{"title":"A data-driven approach to turmeric disease detection: Dataset for plant condition classification","authors":"A K M Fazlul Kobir Siam, Md. Asraful Sharker Nirob, Prayma Bishshash, Md Assaduzzaman, Apurba Ghosh, Sheak Rashed Haider Noori","doi":"10.1016/j.dib.2025.111435","DOIUrl":null,"url":null,"abstract":"<div><div>Turmeric, Curcuma longa, is an economically and medicinally important crop. However, the crop has often suffered from diseases such as rhizome disease roots, leaf blotch, and dry conditions of leaves. The control of these diseases essentially requires early and accurate diagnosis to reduce losses and help farmers adopt sustainable farming methods. The conventional methods of diagnosis involve a visual examination of symptoms, which is laborious, subjective, and rather impossible in large areas. This paper proposes a new dataset consisting of 1037 originals and 4628 augmented images of turmeric plants representing five classes: healthy leaf, dry leaf, leaf blotch, rhizome disease roots, and rhizome healthy roots. The dataset was pre-processed to enhance its applicability to deep learning applications by resizing, cleaning, and augmenting the data through flipping, rotation, and brightness adjustment. The turmeric plant disease classification was conducted using the Inception-v3 model, attaining an accuracy of 97.36% with data augmentation, compared to 95.71% without augmentation. Some of the major key performance metrics are precision, recall, and F1-score, which establish the efficacy and robustness of the model. This work attempts to show the potential of AI-aided solutions towards precision farming and sustainable crop production in developing agriculture disease management. The publicly available dataset and the results obtained are expected to attract more research interest for innovations in AI-driven agriculture<em>.</em></div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"59 ","pages":"Article 111435"},"PeriodicalIF":1.0000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340925001672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A data-driven approach to turmeric disease detection: Dataset for plant condition classification
Turmeric, Curcuma longa, is an economically and medicinally important crop. However, the crop has often suffered from diseases such as rhizome disease roots, leaf blotch, and dry conditions of leaves. The control of these diseases essentially requires early and accurate diagnosis to reduce losses and help farmers adopt sustainable farming methods. The conventional methods of diagnosis involve a visual examination of symptoms, which is laborious, subjective, and rather impossible in large areas. This paper proposes a new dataset consisting of 1037 originals and 4628 augmented images of turmeric plants representing five classes: healthy leaf, dry leaf, leaf blotch, rhizome disease roots, and rhizome healthy roots. The dataset was pre-processed to enhance its applicability to deep learning applications by resizing, cleaning, and augmenting the data through flipping, rotation, and brightness adjustment. The turmeric plant disease classification was conducted using the Inception-v3 model, attaining an accuracy of 97.36% with data augmentation, compared to 95.71% without augmentation. Some of the major key performance metrics are precision, recall, and F1-score, which establish the efficacy and robustness of the model. This work attempts to show the potential of AI-aided solutions towards precision farming and sustainable crop production in developing agriculture disease management. The publicly available dataset and the results obtained are expected to attract more research interest for innovations in AI-driven agriculture.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.