Yuya Sugiura, Tatsuya Ikuta, Yuji Sumii, Hirokazu Tsujimoto, Kohei Suzuki, Ryoji Suno, Putri Nur Arina Binti Mohd Ariff, So Iwata, Norio Shibata, Asuka Inoue, Takuya Kobayashi, Hideki Kandori, Kota Katayama
{"title":"发现毒蕈碱受体M2的关键激活热点","authors":"Yuya Sugiura, Tatsuya Ikuta, Yuji Sumii, Hirokazu Tsujimoto, Kohei Suzuki, Ryoji Suno, Putri Nur Arina Binti Mohd Ariff, So Iwata, Norio Shibata, Asuka Inoue, Takuya Kobayashi, Hideki Kandori, Kota Katayama","doi":"10.1021/jacs.4c14385","DOIUrl":null,"url":null,"abstract":"The M<sub>2</sub> muscarinic receptor (M<sub>2</sub>R) is a prototypical G protein-coupled receptor (GPCR) that serves as a model system for understanding ligand recognition and GPCR activation. Here, using vibrational spectroscopy, we identify the mechanisms governing M<sub>2</sub>R activation by its native agonist, acetylcholine. Combined with mutagenesis, computational chemistry, and organic synthetic chemistry, our analyses found that the precise distance between acetylcholine and Asn404, one of the amino acids constituting the ligand-binding site, is important for M<sub>2</sub>R activation and that the N404Q mutant undergoes partial active state-like conformational changes. We discovered that a water molecule bridging acetylcholine and Asn404 forms a precise and flexible hydrogen bond network, triggering the outward movement of transmembrane helix 6 in M<sub>2</sub>R. Consistent with this observation, disruptions in this hydrogen bond network via chemical modification at the α- or β-position of acetylcholine failed to activate M<sub>2</sub>R. Collectively, our findings pinpoint Asn404 as a critical residue that both senses acetylcholine binding and induces M<sub>2</sub>R activation.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"23 1","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering Key Activation Hotspots in the M2 Muscarinic Receptor\",\"authors\":\"Yuya Sugiura, Tatsuya Ikuta, Yuji Sumii, Hirokazu Tsujimoto, Kohei Suzuki, Ryoji Suno, Putri Nur Arina Binti Mohd Ariff, So Iwata, Norio Shibata, Asuka Inoue, Takuya Kobayashi, Hideki Kandori, Kota Katayama\",\"doi\":\"10.1021/jacs.4c14385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The M<sub>2</sub> muscarinic receptor (M<sub>2</sub>R) is a prototypical G protein-coupled receptor (GPCR) that serves as a model system for understanding ligand recognition and GPCR activation. Here, using vibrational spectroscopy, we identify the mechanisms governing M<sub>2</sub>R activation by its native agonist, acetylcholine. Combined with mutagenesis, computational chemistry, and organic synthetic chemistry, our analyses found that the precise distance between acetylcholine and Asn404, one of the amino acids constituting the ligand-binding site, is important for M<sub>2</sub>R activation and that the N404Q mutant undergoes partial active state-like conformational changes. We discovered that a water molecule bridging acetylcholine and Asn404 forms a precise and flexible hydrogen bond network, triggering the outward movement of transmembrane helix 6 in M<sub>2</sub>R. Consistent with this observation, disruptions in this hydrogen bond network via chemical modification at the α- or β-position of acetylcholine failed to activate M<sub>2</sub>R. Collectively, our findings pinpoint Asn404 as a critical residue that both senses acetylcholine binding and induces M<sub>2</sub>R activation.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c14385\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c14385","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Discovering Key Activation Hotspots in the M2 Muscarinic Receptor
The M2 muscarinic receptor (M2R) is a prototypical G protein-coupled receptor (GPCR) that serves as a model system for understanding ligand recognition and GPCR activation. Here, using vibrational spectroscopy, we identify the mechanisms governing M2R activation by its native agonist, acetylcholine. Combined with mutagenesis, computational chemistry, and organic synthetic chemistry, our analyses found that the precise distance between acetylcholine and Asn404, one of the amino acids constituting the ligand-binding site, is important for M2R activation and that the N404Q mutant undergoes partial active state-like conformational changes. We discovered that a water molecule bridging acetylcholine and Asn404 forms a precise and flexible hydrogen bond network, triggering the outward movement of transmembrane helix 6 in M2R. Consistent with this observation, disruptions in this hydrogen bond network via chemical modification at the α- or β-position of acetylcholine failed to activate M2R. Collectively, our findings pinpoint Asn404 as a critical residue that both senses acetylcholine binding and induces M2R activation.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.