具有n级Sonin核的djbashian - nersessian型的分数阶导数及其基本性质

IF 2.5 2区 数学 Q1 MATHEMATICS
Mohammed Al-Refai, Yuri Luchko
{"title":"具有n级Sonin核的djbashian - nersessian型的分数阶导数及其基本性质","authors":"Mohammed Al-Refai, Yuri Luchko","doi":"10.1007/s13540-025-00385-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we introduce a concept of the <i>n</i>th-level general fractional derivatives that combine the Djrbashian–Nersessian fractional derivatives and the general fractional derivatives with the Sonin kernels in one definition. Then some basic properties of these fractional derivatives including the fundamental theorems of fractional calculus and a formula for their Laplace transform are presented. As an example, all results derived for the <i>n</i>th-level general fractional derivatives are demonstrated on the important particular case of the Djrbashian–Nersessian fractional derivative.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"22 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On fractional derivatives of Djrbashian–Nersessian type with the nth-level Sonin kernels and their basic properties\",\"authors\":\"Mohammed Al-Refai, Yuri Luchko\",\"doi\":\"10.1007/s13540-025-00385-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we introduce a concept of the <i>n</i>th-level general fractional derivatives that combine the Djrbashian–Nersessian fractional derivatives and the general fractional derivatives with the Sonin kernels in one definition. Then some basic properties of these fractional derivatives including the fundamental theorems of fractional calculus and a formula for their Laplace transform are presented. As an example, all results derived for the <i>n</i>th-level general fractional derivatives are demonstrated on the important particular case of the Djrbashian–Nersessian fractional derivative.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-025-00385-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00385-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了将Djrbashian-Nersessian分数阶导数和一般分数阶导数与Sonin核结合在一个定义中的n阶一般分数阶导数的概念。然后给出了这些分数阶导数的一些基本性质,包括分数阶微积分的基本定理和它们的拉普拉斯变换的一个公式。作为一个例子,在Djrbashian-Nersessian分数阶导数的重要特例上证明了所有关于n阶一般分数阶导数的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On fractional derivatives of Djrbashian–Nersessian type with the nth-level Sonin kernels and their basic properties

In this paper, we introduce a concept of the nth-level general fractional derivatives that combine the Djrbashian–Nersessian fractional derivatives and the general fractional derivatives with the Sonin kernels in one definition. Then some basic properties of these fractional derivatives including the fundamental theorems of fractional calculus and a formula for their Laplace transform are presented. As an example, all results derived for the nth-level general fractional derivatives are demonstrated on the important particular case of the Djrbashian–Nersessian fractional derivative.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信