哈伯诱导的相变:晶格模拟中Ricci再加热的引力波印记

IF 5.9 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Dario Bettoni, Giorgio Laverda, Asier Lopez-Eiguren and Javier Rubio
{"title":"哈伯诱导的相变:晶格模拟中Ricci再加热的引力波印记","authors":"Dario Bettoni, Giorgio Laverda, Asier Lopez-Eiguren and Javier Rubio","doi":"10.1088/1475-7516/2025/03/027","DOIUrl":null,"url":null,"abstract":"Gravitational waves offer an unprecedented opportunity to look into the violent high-energy processes happening during the reheating phase of our Universe. We consider a Hubble-induced phase transition scenario as a source of a post-inflationary stochastic background of gravitational waves and analyse the main characteristics of its spectrum for the first time via numerical methods. The output of a large number of fully-fledged classical lattice simulations is condensed in a set of parametric formulas that describe key features of the GW spectrum, such as its peak amplitude and characteristic frequency, and avoid the need for further time-consuming simulations. The signal from such stochastic background is compared to the prospective sensitivity of future gravitational-wave detectors.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"77 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hubble-induced phase transitions: gravitational-wave imprint of Ricci reheating from lattice simulations\",\"authors\":\"Dario Bettoni, Giorgio Laverda, Asier Lopez-Eiguren and Javier Rubio\",\"doi\":\"10.1088/1475-7516/2025/03/027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gravitational waves offer an unprecedented opportunity to look into the violent high-energy processes happening during the reheating phase of our Universe. We consider a Hubble-induced phase transition scenario as a source of a post-inflationary stochastic background of gravitational waves and analyse the main characteristics of its spectrum for the first time via numerical methods. The output of a large number of fully-fledged classical lattice simulations is condensed in a set of parametric formulas that describe key features of the GW spectrum, such as its peak amplitude and characteristic frequency, and avoid the need for further time-consuming simulations. The signal from such stochastic background is compared to the prospective sensitivity of future gravitational-wave detectors.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/03/027\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/03/027","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

引力波提供了一个前所未有的机会来研究发生在我们宇宙再加热阶段的剧烈高能过程。我们将哈勃诱发的相变情景作为引力波暴胀后随机背景的来源,并首次通过数值方法分析了其光谱的主要特征。大量成熟的经典晶格模拟的输出被浓缩在一组参数公式中,这些参数公式描述了GW频谱的关键特征,如其峰值幅度和特征频率,并避免了进一步耗时的模拟。来自这种随机背景的信号与未来引力波探测器的预期灵敏度进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hubble-induced phase transitions: gravitational-wave imprint of Ricci reheating from lattice simulations
Gravitational waves offer an unprecedented opportunity to look into the violent high-energy processes happening during the reheating phase of our Universe. We consider a Hubble-induced phase transition scenario as a source of a post-inflationary stochastic background of gravitational waves and analyse the main characteristics of its spectrum for the first time via numerical methods. The output of a large number of fully-fledged classical lattice simulations is condensed in a set of parametric formulas that describe key features of the GW spectrum, such as its peak amplitude and characteristic frequency, and avoid the need for further time-consuming simulations. The signal from such stochastic background is compared to the prospective sensitivity of future gravitational-wave detectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信