新型计算管道能够可靠地诊断倒置性尿路上皮乳头状瘤并将其与尿路上皮癌区分开来。

IF 2.8 Q2 ONCOLOGY
JCO Clinical Cancer Informatics Pub Date : 2025-03-01 Epub Date: 2025-03-13 DOI:10.1200/CCI.24.00059
Wei Shao, Michael Cheng, Antonio Lopez-Beltran, Adeboye O Osunkoya, Jie Zhang, Liang Cheng, Kun Huang
{"title":"新型计算管道能够可靠地诊断倒置性尿路上皮乳头状瘤并将其与尿路上皮癌区分开来。","authors":"Wei Shao, Michael Cheng, Antonio Lopez-Beltran, Adeboye O Osunkoya, Jie Zhang, Liang Cheng, Kun Huang","doi":"10.1200/CCI.24.00059","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>With the aid of ever-increasing computing resources, many deep learning algorithms have been proposed to aid in diagnostic workup for clinicians. However, existing studies usually selected informative patches from whole-slide images for the training of the deep learning model, requiring labor-intensive labeling efforts. This work aimed to improve diagnostic accuracy through the statistic features extracted from hematoxylin and eosin-stained slides.</p><p><strong>Methods: </strong>We designed a computational pipeline for the diagnosis of inverted urothelial papilloma (IUP) of the bladder from its cancer mimics using statistical features automatically extracted from whole-slide images. Whole-slide images from 225 cases of common and uncommon urothelial lesions (64 IUPs; 69 inverted urothelial carcinomas [UCInvs], and 92 low-grade urothelial carcinoma [UCLG]) were analyzed.</p><p><strong>Results: </strong>We identified 68 image features in total that were significantly different between IUP and UCInv and 42 image features significantly different between IUP and UCLG. Our method integrated multiple types of image features and achieved high AUCs (the AUCs) of 0.913 and 0.920 for classifying IUP from UCInv and conventional UC, respectively. Moreover, we constructed an ensemble classifier to test the prediction accuracy of IUP from an external validation cohort, which provided a new workflow to diagnose rare cancer subtypes and test the models with limited validation samples.</p><p><strong>Conclusion: </strong>Our data suggest that the proposed computational pipeline can robustly and accurately capture histopathologic differences between IUP and other UC subtypes. The proposed workflow and related findings have the potential to expand the clinician's armamentarium for accurate diagnosis of urothelial malignancies and other rare tumors.</p>","PeriodicalId":51626,"journal":{"name":"JCO Clinical Cancer Informatics","volume":"9 ","pages":"e2400059"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Computational Pipeline Enables Reliable Diagnosis of Inverted Urothelial Papilloma and Distinguishes It From Urothelial Carcinoma.\",\"authors\":\"Wei Shao, Michael Cheng, Antonio Lopez-Beltran, Adeboye O Osunkoya, Jie Zhang, Liang Cheng, Kun Huang\",\"doi\":\"10.1200/CCI.24.00059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>With the aid of ever-increasing computing resources, many deep learning algorithms have been proposed to aid in diagnostic workup for clinicians. However, existing studies usually selected informative patches from whole-slide images for the training of the deep learning model, requiring labor-intensive labeling efforts. This work aimed to improve diagnostic accuracy through the statistic features extracted from hematoxylin and eosin-stained slides.</p><p><strong>Methods: </strong>We designed a computational pipeline for the diagnosis of inverted urothelial papilloma (IUP) of the bladder from its cancer mimics using statistical features automatically extracted from whole-slide images. Whole-slide images from 225 cases of common and uncommon urothelial lesions (64 IUPs; 69 inverted urothelial carcinomas [UCInvs], and 92 low-grade urothelial carcinoma [UCLG]) were analyzed.</p><p><strong>Results: </strong>We identified 68 image features in total that were significantly different between IUP and UCInv and 42 image features significantly different between IUP and UCLG. Our method integrated multiple types of image features and achieved high AUCs (the AUCs) of 0.913 and 0.920 for classifying IUP from UCInv and conventional UC, respectively. Moreover, we constructed an ensemble classifier to test the prediction accuracy of IUP from an external validation cohort, which provided a new workflow to diagnose rare cancer subtypes and test the models with limited validation samples.</p><p><strong>Conclusion: </strong>Our data suggest that the proposed computational pipeline can robustly and accurately capture histopathologic differences between IUP and other UC subtypes. The proposed workflow and related findings have the potential to expand the clinician's armamentarium for accurate diagnosis of urothelial malignancies and other rare tumors.</p>\",\"PeriodicalId\":51626,\"journal\":{\"name\":\"JCO Clinical Cancer Informatics\",\"volume\":\"9 \",\"pages\":\"e2400059\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO Clinical Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1200/CCI.24.00059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Clinical Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/CCI.24.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:在不断增加的计算资源的帮助下,许多深度学习算法被提出来帮助临床医生进行诊断工作。然而,现有的研究通常是从整个幻灯片图像中选择信息补丁进行深度学习模型的训练,这需要耗费大量的劳动。这项工作旨在通过从苏木精和伊红染色玻片中提取的统计特征来提高诊断的准确性。方法:我们设计了一个计算管道,用于诊断膀胱内翻性尿路上皮乳头状瘤(IUP),该计算管道使用从全片图像中自动提取的统计特征。225例常见和不常见尿路上皮病变(64例IUPs;分析了69例倒位性尿路上皮癌(UCInvs)和92例低级别尿路上皮癌(UCLG)。结果:我们共识别出IUP与UCInv之间存在显著差异的图像特征68个,IUP与UCLG之间存在显著差异的图像特征42个。我们的方法集成了多种类型的图像特征,对UCInv和常规UC进行IUP分类的auc分别达到了0.913和0.920的高auc。此外,我们构建了一个集成分类器来测试来自外部验证队列的IUP预测准确性,这为诊断罕见癌症亚型和在有限验证样本下测试模型提供了新的工作流程。结论:我们的数据表明,所提出的计算管道可以稳健准确地捕获IUP和其他UC亚型之间的组织病理学差异。提出的工作流程和相关发现有可能扩大临床医生对尿路上皮恶性肿瘤和其他罕见肿瘤的准确诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Computational Pipeline Enables Reliable Diagnosis of Inverted Urothelial Papilloma and Distinguishes It From Urothelial Carcinoma.

Purpose: With the aid of ever-increasing computing resources, many deep learning algorithms have been proposed to aid in diagnostic workup for clinicians. However, existing studies usually selected informative patches from whole-slide images for the training of the deep learning model, requiring labor-intensive labeling efforts. This work aimed to improve diagnostic accuracy through the statistic features extracted from hematoxylin and eosin-stained slides.

Methods: We designed a computational pipeline for the diagnosis of inverted urothelial papilloma (IUP) of the bladder from its cancer mimics using statistical features automatically extracted from whole-slide images. Whole-slide images from 225 cases of common and uncommon urothelial lesions (64 IUPs; 69 inverted urothelial carcinomas [UCInvs], and 92 low-grade urothelial carcinoma [UCLG]) were analyzed.

Results: We identified 68 image features in total that were significantly different between IUP and UCInv and 42 image features significantly different between IUP and UCLG. Our method integrated multiple types of image features and achieved high AUCs (the AUCs) of 0.913 and 0.920 for classifying IUP from UCInv and conventional UC, respectively. Moreover, we constructed an ensemble classifier to test the prediction accuracy of IUP from an external validation cohort, which provided a new workflow to diagnose rare cancer subtypes and test the models with limited validation samples.

Conclusion: Our data suggest that the proposed computational pipeline can robustly and accurately capture histopathologic differences between IUP and other UC subtypes. The proposed workflow and related findings have the potential to expand the clinician's armamentarium for accurate diagnosis of urothelial malignancies and other rare tumors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
4.80%
发文量
190
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信