IF 10.4 1区 生物学 Q1 GENETICS & HEREDITY
Yu Wang, Zaiyi Liu, Xiaoke Ma
{"title":"MuCST: restoring and integrating heterogeneous morphology images and spatial transcriptomics data with contrastive learning.","authors":"Yu Wang, Zaiyi Liu, Xiaoke Ma","doi":"10.1186/s13073-025-01449-1","DOIUrl":null,"url":null,"abstract":"<p><p>Spatially resolved transcriptomics (SRT) simultaneously measure spatial location, histology images, and transcriptional profiles of cells or regions in undissociated tissues. Integrative analysis of multi-modal SRT data holds immense potential for understanding biological mechanisms. Here, we present a flexible multi-modal contrastive learning for the integration of SRT data (MuCST), which joins denoising, heterogeneity elimination, and compatible feature learning. MuCST accurately identifies spatial domains and is applicable to diverse datasets platforms. Overall, MuCST provides an alternative for integrative analysis of multi-modal SRT data ( https://github.com/xkmaxidian/MuCST ).</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"17 1","pages":"21"},"PeriodicalIF":10.4000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907906/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-025-01449-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

空间分辨转录组学(SRT)可同时测量未分离组织中细胞或区域的空间位置、组织学图像和转录特征。多模态 SRT 数据的整合分析为了解生物机制提供了巨大的潜力。在这里,我们提出了一种用于整合 SRT 数据的灵活多模态对比学习方法(MuCST),它将去噪、异质性消除和兼容特征学习结合在一起。MuCST 能准确识别空间域,适用于各种数据集平台。总之,MuCST 为多模态 SRT 数据的综合分析提供了另一种选择 ( https://github.com/xkmaxidian/MuCST )。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MuCST: restoring and integrating heterogeneous morphology images and spatial transcriptomics data with contrastive learning.

Spatially resolved transcriptomics (SRT) simultaneously measure spatial location, histology images, and transcriptional profiles of cells or regions in undissociated tissues. Integrative analysis of multi-modal SRT data holds immense potential for understanding biological mechanisms. Here, we present a flexible multi-modal contrastive learning for the integration of SRT data (MuCST), which joins denoising, heterogeneity elimination, and compatible feature learning. MuCST accurately identifies spatial domains and is applicable to diverse datasets platforms. Overall, MuCST provides an alternative for integrative analysis of multi-modal SRT data ( https://github.com/xkmaxidian/MuCST ).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genome Medicine
Genome Medicine GENETICS & HEREDITY-
CiteScore
20.80
自引率
0.80%
发文量
128
审稿时长
6-12 weeks
期刊介绍: Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信