{"title":"DRAG: design RNAs as hierarchical graphs with reinforcement learning.","authors":"Yichong Li, Xiaoyong Pan, Hongbin Shen, Yang Yang","doi":"10.1093/bib/bbaf106","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid development of RNA vaccines and therapeutics puts forward intensive requirements on the sequence design of RNAs. RNA sequence design, or RNA inverse folding, aims to generate RNA sequences that can fold into specific target structures. To date, efficient and high-accuracy prediction models for secondary structures of RNAs have been developed. They provide a basis for computational RNA sequence design methods. Especially, reinforcement learning (RL) has emerged as a promising approach for RNA design due to its ability to learn from trial and error in generation tasks and work without ground truth data. However, existing RL methods are limited in considering complex hierarchical structures in RNA design environments. To address the above limitation, we propose DRAG, an RL method that builds design environments for target secondary structures with hierarchical division based on graph neural networks. Through extensive experiments on benchmark datasets, DRAG exhibits remarkable performance compared with current machine-learning approaches for RNA sequence design. This advantage is particularly evident in long and intricate tasks involving structures with significant depth.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904406/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf106","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
DRAG: design RNAs as hierarchical graphs with reinforcement learning.
The rapid development of RNA vaccines and therapeutics puts forward intensive requirements on the sequence design of RNAs. RNA sequence design, or RNA inverse folding, aims to generate RNA sequences that can fold into specific target structures. To date, efficient and high-accuracy prediction models for secondary structures of RNAs have been developed. They provide a basis for computational RNA sequence design methods. Especially, reinforcement learning (RL) has emerged as a promising approach for RNA design due to its ability to learn from trial and error in generation tasks and work without ground truth data. However, existing RL methods are limited in considering complex hierarchical structures in RNA design environments. To address the above limitation, we propose DRAG, an RL method that builds design environments for target secondary structures with hierarchical division based on graph neural networks. Through extensive experiments on benchmark datasets, DRAG exhibits remarkable performance compared with current machine-learning approaches for RNA sequence design. This advantage is particularly evident in long and intricate tasks involving structures with significant depth.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.