{"title":"提高黑胡萝卜花青素稳定性的研究进展。","authors":"Damla Ezgi Uzun, Tugce Ceyhan, Merve Tomas, Esra Capanoglu","doi":"10.1080/10408398.2025.2469774","DOIUrl":null,"url":null,"abstract":"<p><p>This review focuses on the methods of enhancing the stability of black carrot anthocyanins, which are susceptible to degradation due to temperature, pH, light, and oxygen. These anthocyanins are valued for their health benefits and blue-violet color, but their instability limits their application in the food industry. It is hypothesized that implementing advanced stabilization techniques can significantly improve the stability and usability of black carrot anthocyanins. Key methods to improve anthocyanin stability, including encapsulation, co-pigmentation, and acylation, are comprehensively reviewed. Encapsulation techniques such as spray drying, freeze drying, and liposomes have shown effectiveness in protecting anthocyanins during food processing and storage. Co-pigmentation with non-anthocyanin phenolics and using whey proteins significantly enhance thermal and pH stability, thereby improving color retention. Additionally, innovative strategies like genetic modification and nanoencapsulation have demonstrated potential in further stabilizing anthocyanins by enhancing their structural resilience and bioavailability. These innovative approaches represent a significant advancement in the ability to maintain the integrity of black carrot anthocyanins. Advanced techniques for preserving the functional properties and nutritional benefits of black carrot anthocyanins facilitate broader use in health-oriented food products. Combining these modern methods is essential for optimal stability, and further research is needed to optimize these techniques.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-23"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in improving anthocyanin stability in black carrots.\",\"authors\":\"Damla Ezgi Uzun, Tugce Ceyhan, Merve Tomas, Esra Capanoglu\",\"doi\":\"10.1080/10408398.2025.2469774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review focuses on the methods of enhancing the stability of black carrot anthocyanins, which are susceptible to degradation due to temperature, pH, light, and oxygen. These anthocyanins are valued for their health benefits and blue-violet color, but their instability limits their application in the food industry. It is hypothesized that implementing advanced stabilization techniques can significantly improve the stability and usability of black carrot anthocyanins. Key methods to improve anthocyanin stability, including encapsulation, co-pigmentation, and acylation, are comprehensively reviewed. Encapsulation techniques such as spray drying, freeze drying, and liposomes have shown effectiveness in protecting anthocyanins during food processing and storage. Co-pigmentation with non-anthocyanin phenolics and using whey proteins significantly enhance thermal and pH stability, thereby improving color retention. Additionally, innovative strategies like genetic modification and nanoencapsulation have demonstrated potential in further stabilizing anthocyanins by enhancing their structural resilience and bioavailability. These innovative approaches represent a significant advancement in the ability to maintain the integrity of black carrot anthocyanins. Advanced techniques for preserving the functional properties and nutritional benefits of black carrot anthocyanins facilitate broader use in health-oriented food products. Combining these modern methods is essential for optimal stability, and further research is needed to optimize these techniques.</p>\",\"PeriodicalId\":10767,\"journal\":{\"name\":\"Critical reviews in food science and nutrition\",\"volume\":\" \",\"pages\":\"1-23\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in food science and nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/10408398.2025.2469774\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2025.2469774","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Recent advances in improving anthocyanin stability in black carrots.
This review focuses on the methods of enhancing the stability of black carrot anthocyanins, which are susceptible to degradation due to temperature, pH, light, and oxygen. These anthocyanins are valued for their health benefits and blue-violet color, but their instability limits their application in the food industry. It is hypothesized that implementing advanced stabilization techniques can significantly improve the stability and usability of black carrot anthocyanins. Key methods to improve anthocyanin stability, including encapsulation, co-pigmentation, and acylation, are comprehensively reviewed. Encapsulation techniques such as spray drying, freeze drying, and liposomes have shown effectiveness in protecting anthocyanins during food processing and storage. Co-pigmentation with non-anthocyanin phenolics and using whey proteins significantly enhance thermal and pH stability, thereby improving color retention. Additionally, innovative strategies like genetic modification and nanoencapsulation have demonstrated potential in further stabilizing anthocyanins by enhancing their structural resilience and bioavailability. These innovative approaches represent a significant advancement in the ability to maintain the integrity of black carrot anthocyanins. Advanced techniques for preserving the functional properties and nutritional benefits of black carrot anthocyanins facilitate broader use in health-oriented food products. Combining these modern methods is essential for optimal stability, and further research is needed to optimize these techniques.
期刊介绍:
Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition.
With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.