IF 0.5 4区 数学 Q3 MATHEMATICS
Hemant Kalra, Deepak Gumber
{"title":"Automorphisms of finite p-groups","authors":"Hemant Kalra,&nbsp;Deepak Gumber","doi":"10.1007/s00013-024-02095-6","DOIUrl":null,"url":null,"abstract":"<div><p>The non-inner automorphism conjecture (NIAC) and the divisibility problem (DP) are two famous problems in the study of finite <i>p</i>-groups. We observe that the verification of NIAC can be reduced to purely non-abelian finite <i>p</i>-groups. In connecting NIAC with DP, as a consequence of our results obtained on NIAC, we provide a short and cohomology-free proof of a theorem of Yadav, which states that if <i>G</i> is a finite <i>p</i>-group such that (<i>G</i>, <i>Z</i>(<i>G</i>)) is a Camina pair, then |<i>G</i>| divides <span>\\(|{{\\,\\mathrm{\\!Aut}\\,}}(G)|\\)</span>.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 4","pages":"357 - 363"},"PeriodicalIF":0.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02095-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

非内自变猜想(NIAC)和可分性问题(DP)是有限 p 群研究中的两个著名问题。我们发现,NIAC 的验证可以简化为纯粹的非阿贝尔有限 p 群。在将 NIAC 与 DP 联系起来时,作为我们在 NIAC 上得到的结果,我们为 Yadav 的一个定理提供了一个简短且无同调的证明,该定理指出,如果 G 是一个有限 p 群,且 (G, Z(G)) 是一个 Camina 对,那么 |G| 除以 |(|{\{,\mathrm\{!Aut}\,}}(G)|\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automorphisms of finite p-groups

The non-inner automorphism conjecture (NIAC) and the divisibility problem (DP) are two famous problems in the study of finite p-groups. We observe that the verification of NIAC can be reduced to purely non-abelian finite p-groups. In connecting NIAC with DP, as a consequence of our results obtained on NIAC, we provide a short and cohomology-free proof of a theorem of Yadav, which states that if G is a finite p-group such that (GZ(G)) is a Camina pair, then |G| divides \(|{{\,\mathrm{\!Aut}\,}}(G)|\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信