保护机器学习模型免受训练数据集提取的影响

IF 0.6 Q4 AUTOMATION & CONTROL SYSTEMS
M. O. Kalinin, A. A. Muryleva, V. V. Platonov
{"title":"保护机器学习模型免受训练数据集提取的影响","authors":"M. O. Kalinin,&nbsp;A. A. Muryleva,&nbsp;V. V. Platonov","doi":"10.3103/S0146411624700871","DOIUrl":null,"url":null,"abstract":"<p>The problem of protecting machine learning models from the threat of data privacy violation implementing membership inference in training data sets is considered. A method of protective noising of the training set is proposed. It is experimentally shown that Gaussian noising of training data with a scale of 0.2 is the simplest and most effective way to protect machine learning models from membership inference in the training set. In comparison with alternatives, this method is easy to implement, universal in relation to types of models, and allows reducing the effectiveness of membership inference to 26 percentage points.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"58 8","pages":"1234 - 1241"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protecting Machine Learning Models from Training Data Set Extraction\",\"authors\":\"M. O. Kalinin,&nbsp;A. A. Muryleva,&nbsp;V. V. Platonov\",\"doi\":\"10.3103/S0146411624700871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The problem of protecting machine learning models from the threat of data privacy violation implementing membership inference in training data sets is considered. A method of protective noising of the training set is proposed. It is experimentally shown that Gaussian noising of training data with a scale of 0.2 is the simplest and most effective way to protect machine learning models from membership inference in the training set. In comparison with alternatives, this method is easy to implement, universal in relation to types of models, and allows reducing the effectiveness of membership inference to 26 percentage points.</p>\",\"PeriodicalId\":46238,\"journal\":{\"name\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"volume\":\"58 8\",\"pages\":\"1234 - 1241\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0146411624700871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411624700871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

通过对训练数据集进行隶属度推理,考虑了保护机器学习模型免受数据隐私侵犯威胁的问题。提出了一种训练集保护噪声的方法。实验表明,对训练数据进行0.2尺度的高斯噪声处理是保护机器学习模型不受训练集中隶属度推断影响的最简单、最有效的方法。与其他方法相比,该方法易于实现,与模型类型有关,并且允许将成员推理的有效性降低到26个百分点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Protecting Machine Learning Models from Training Data Set Extraction

Protecting Machine Learning Models from Training Data Set Extraction

The problem of protecting machine learning models from the threat of data privacy violation implementing membership inference in training data sets is considered. A method of protective noising of the training set is proposed. It is experimentally shown that Gaussian noising of training data with a scale of 0.2 is the simplest and most effective way to protect machine learning models from membership inference in the training set. In comparison with alternatives, this method is easy to implement, universal in relation to types of models, and allows reducing the effectiveness of membership inference to 26 percentage points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AUTOMATIC CONTROL AND COMPUTER SCIENCES
AUTOMATIC CONTROL AND COMPUTER SCIENCES AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.70
自引率
22.20%
发文量
47
期刊介绍: Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信