使用生成对抗网络来对抗隐写分析

IF 0.6 Q4 AUTOMATION & CONTROL SYSTEMS
E. B. Aleksandrova, A. I. Bezborodko, D. S. Lavrova
{"title":"使用生成对抗网络来对抗隐写分析","authors":"E. B. Aleksandrova,&nbsp;A. I. Bezborodko,&nbsp;D. S. Lavrova","doi":"10.3103/S0146411624700937","DOIUrl":null,"url":null,"abstract":"<p>An approach using a generative adversarial network (GAN) is proposed to increase the robustness of the steganographic method against modern steganalyzers. This approach is based on the combined operation of a GAN, a pixel importance map, and the least significant bit (LSB) substitution method. The results of the experimental studies confirmed the effectiveness of the proposed approach.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"58 8","pages":"1283 - 1288"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Use of Generative-Adversarial Networks to Counter Steganalysis\",\"authors\":\"E. B. Aleksandrova,&nbsp;A. I. Bezborodko,&nbsp;D. S. Lavrova\",\"doi\":\"10.3103/S0146411624700937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An approach using a generative adversarial network (GAN) is proposed to increase the robustness of the steganographic method against modern steganalyzers. This approach is based on the combined operation of a GAN, a pixel importance map, and the least significant bit (LSB) substitution method. The results of the experimental studies confirmed the effectiveness of the proposed approach.</p>\",\"PeriodicalId\":46238,\"journal\":{\"name\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"volume\":\"58 8\",\"pages\":\"1283 - 1288\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATIC CONTROL AND COMPUTER SCIENCES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0146411624700937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411624700937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种使用生成对抗网络(GAN)的方法来提高隐写方法对现代隐写分析器的鲁棒性。该方法是基于GAN、像素重要性图和最低有效位(LSB)替换法的组合操作。实验研究结果证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Use of Generative-Adversarial Networks to Counter Steganalysis

The Use of Generative-Adversarial Networks to Counter Steganalysis

An approach using a generative adversarial network (GAN) is proposed to increase the robustness of the steganographic method against modern steganalyzers. This approach is based on the combined operation of a GAN, a pixel importance map, and the least significant bit (LSB) substitution method. The results of the experimental studies confirmed the effectiveness of the proposed approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AUTOMATIC CONTROL AND COMPUTER SCIENCES
AUTOMATIC CONTROL AND COMPUTER SCIENCES AUTOMATION & CONTROL SYSTEMS-
CiteScore
1.70
自引率
22.20%
发文量
47
期刊介绍: Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信