{"title":"对一些基本融合定理的测地线洞察","authors":"M. Yasir Kızmaz","doi":"10.1007/s00013-025-02101-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>p</i> be an odd prime and <i>P</i> a Sylow <i>p</i>-subgroup of a finite group <i>G</i>. If <i>P</i> is either metacyclic or each of its elements of order <i>p</i> lies in the center, then <span>\\(N_G(P)\\)</span> controls strong <i>G</i>-fusion in <i>P</i>, as established in Martino and Priddy (Math. Z. 225(2):277–288, 1997, Theorems 2.7 and 4.1). First, we provide alternative proofs for these results without relying on the Alperin fusion theorem, thereby simplifying the theoretical framework. Second, we establish an equivalence for the control of fusion in terms of a permutation character. Specifically, we define the permutation character induced by the action of <i>G</i> on <span>\\(Syl_p(G)\\)</span> as <i>the Sylow </i><i>p</i><i>-character of</i> <i>G</i>. Now let <span>\\(P\\in Syl_p(G)\\)</span>, and <span>\\(N_G(P)\\le N \\le G \\)</span>. Set <span>\\(\\chi ,\\psi \\)</span> to be the Sylow <i>p</i>-characters of <i>G</i> and <i>N</i>, respectively. Then we prove that <i>N</i> controls <i>G</i>-fusion in <i>P</i> if and only if <span>\\(\\frac{\\chi (g)}{\\psi (g)}=\\frac{|C_G(g)|}{|C_N(g)|} \\text { for all } g\\in P.\\)</span> In the case that <i>N</i> is a <i>p</i>-local subgroup, further results are obtained.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 4","pages":"377 - 388"},"PeriodicalIF":0.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A geodesic insight into some fundamental fusion theorems\",\"authors\":\"M. Yasir Kızmaz\",\"doi\":\"10.1007/s00013-025-02101-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>p</i> be an odd prime and <i>P</i> a Sylow <i>p</i>-subgroup of a finite group <i>G</i>. If <i>P</i> is either metacyclic or each of its elements of order <i>p</i> lies in the center, then <span>\\\\(N_G(P)\\\\)</span> controls strong <i>G</i>-fusion in <i>P</i>, as established in Martino and Priddy (Math. Z. 225(2):277–288, 1997, Theorems 2.7 and 4.1). First, we provide alternative proofs for these results without relying on the Alperin fusion theorem, thereby simplifying the theoretical framework. Second, we establish an equivalence for the control of fusion in terms of a permutation character. Specifically, we define the permutation character induced by the action of <i>G</i> on <span>\\\\(Syl_p(G)\\\\)</span> as <i>the Sylow </i><i>p</i><i>-character of</i> <i>G</i>. Now let <span>\\\\(P\\\\in Syl_p(G)\\\\)</span>, and <span>\\\\(N_G(P)\\\\le N \\\\le G \\\\)</span>. Set <span>\\\\(\\\\chi ,\\\\psi \\\\)</span> to be the Sylow <i>p</i>-characters of <i>G</i> and <i>N</i>, respectively. Then we prove that <i>N</i> controls <i>G</i>-fusion in <i>P</i> if and only if <span>\\\\(\\\\frac{\\\\chi (g)}{\\\\psi (g)}=\\\\frac{|C_G(g)|}{|C_N(g)|} \\\\text { for all } g\\\\in P.\\\\)</span> In the case that <i>N</i> is a <i>p</i>-local subgroup, further results are obtained.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"124 4\",\"pages\":\"377 - 388\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02101-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02101-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设p是奇素数,p是有限群g的Sylow p子群。如果p是亚环或其p阶的每个元素位于中心,则\(N_G(P)\)控制p中的强g融合,如Martino和Priddy (Math)所建立的。数学学报(2):277 - 288,1997,定理2.7和4.1)。首先,我们提供了这些结果的替代证明,而不依赖于Alperin融合定理,从而简化了理论框架。其次,我们根据置换特征建立了融合控制的等价性。具体地说,我们将G作用于\(Syl_p(G)\)所引起的置换特征定义为G的Sylow p-特征,现在设\(P\in Syl_p(G)\),和\(N_G(P)\le N \le G \)。设置\(\chi ,\psi \)分别为G和N的小写p字符。然后证明了N控制P中的g融合当且仅当\(\frac{\chi (g)}{\psi (g)}=\frac{|C_G(g)|}{|C_N(g)|} \text { for all } g\in P.\)当N是P局部子群时,得到了进一步的结果。
A geodesic insight into some fundamental fusion theorems
Let p be an odd prime and P a Sylow p-subgroup of a finite group G. If P is either metacyclic or each of its elements of order p lies in the center, then \(N_G(P)\) controls strong G-fusion in P, as established in Martino and Priddy (Math. Z. 225(2):277–288, 1997, Theorems 2.7 and 4.1). First, we provide alternative proofs for these results without relying on the Alperin fusion theorem, thereby simplifying the theoretical framework. Second, we establish an equivalence for the control of fusion in terms of a permutation character. Specifically, we define the permutation character induced by the action of G on \(Syl_p(G)\) as the Sylow p-character ofG. Now let \(P\in Syl_p(G)\), and \(N_G(P)\le N \le G \). Set \(\chi ,\psi \) to be the Sylow p-characters of G and N, respectively. Then we prove that N controls G-fusion in P if and only if \(\frac{\chi (g)}{\psi (g)}=\frac{|C_G(g)|}{|C_N(g)|} \text { for all } g\in P.\) In the case that N is a p-local subgroup, further results are obtained.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.