多级稀疏网络套索:具有灵活样本群的局部稀疏学习

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Luhuan Fei , Xinyi Wang , Jiankun Wang , Lu Sun , Yuyao Zhang
{"title":"多级稀疏网络套索:具有灵活样本群的局部稀疏学习","authors":"Luhuan Fei ,&nbsp;Xinyi Wang ,&nbsp;Jiankun Wang ,&nbsp;Lu Sun ,&nbsp;Yuyao Zhang","doi":"10.1016/j.neucom.2025.129898","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional learning usually assumes that all samples share the same global model, which fails to preserve critical local information for heterogeneous data. It can be tackled by detecting sample clusters and learning sample-specific models but is limited to sample-level clustering and sample-specific feature selection. In this paper, we propose multi-level sparse network lasso (MSN Lasso) for flexible local learning. It multiplicatively decomposes model parameters into two components: One component is for coarse-grained group-level, and another is for fine-grained entry-level. At the clustering stage, MSN Lasso simultaneously groups samples (group-level) and clusters specific features across samples (entry-level). At the feature selection stage, it enables both across-sample (group-level) and sample-specific (entry-level) feature selection. Theoretical analysis reveals a potential equivalence to a jointly regularized local model, which informs the development of an efficient algorithm. A divide-and-conquer optimization strategy is further introduced to enhance the algorithm’s efficiency. Extensive experiments across diverse datasets demonstrate that MSN Lasso outperforms existing methods and exhibits greater flexibility.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"635 ","pages":"Article 129898"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-level sparse network lasso: Locally sparse learning with flexible sample clusters\",\"authors\":\"Luhuan Fei ,&nbsp;Xinyi Wang ,&nbsp;Jiankun Wang ,&nbsp;Lu Sun ,&nbsp;Yuyao Zhang\",\"doi\":\"10.1016/j.neucom.2025.129898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traditional learning usually assumes that all samples share the same global model, which fails to preserve critical local information for heterogeneous data. It can be tackled by detecting sample clusters and learning sample-specific models but is limited to sample-level clustering and sample-specific feature selection. In this paper, we propose multi-level sparse network lasso (MSN Lasso) for flexible local learning. It multiplicatively decomposes model parameters into two components: One component is for coarse-grained group-level, and another is for fine-grained entry-level. At the clustering stage, MSN Lasso simultaneously groups samples (group-level) and clusters specific features across samples (entry-level). At the feature selection stage, it enables both across-sample (group-level) and sample-specific (entry-level) feature selection. Theoretical analysis reveals a potential equivalence to a jointly regularized local model, which informs the development of an efficient algorithm. A divide-and-conquer optimization strategy is further introduced to enhance the algorithm’s efficiency. Extensive experiments across diverse datasets demonstrate that MSN Lasso outperforms existing methods and exhibits greater flexibility.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"635 \",\"pages\":\"Article 129898\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231225005703\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225005703","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-level sparse network lasso: Locally sparse learning with flexible sample clusters
Traditional learning usually assumes that all samples share the same global model, which fails to preserve critical local information for heterogeneous data. It can be tackled by detecting sample clusters and learning sample-specific models but is limited to sample-level clustering and sample-specific feature selection. In this paper, we propose multi-level sparse network lasso (MSN Lasso) for flexible local learning. It multiplicatively decomposes model parameters into two components: One component is for coarse-grained group-level, and another is for fine-grained entry-level. At the clustering stage, MSN Lasso simultaneously groups samples (group-level) and clusters specific features across samples (entry-level). At the feature selection stage, it enables both across-sample (group-level) and sample-specific (entry-level) feature selection. Theoretical analysis reveals a potential equivalence to a jointly regularized local model, which informs the development of an efficient algorithm. A divide-and-conquer optimization strategy is further introduced to enhance the algorithm’s efficiency. Extensive experiments across diverse datasets demonstrate that MSN Lasso outperforms existing methods and exhibits greater flexibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信