用于图像语义分割的注意力引导滤波和细化特征网络

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shusheng Li , Wenjun Tan , Liang Wan , Shufen Zhang , Changshuai Zhang , Yanliang Guo , Jiale Li
{"title":"用于图像语义分割的注意力引导滤波和细化特征网络","authors":"Shusheng Li ,&nbsp;Wenjun Tan ,&nbsp;Liang Wan ,&nbsp;Shufen Zhang ,&nbsp;Changshuai Zhang ,&nbsp;Yanliang Guo ,&nbsp;Jiale Li","doi":"10.1016/j.knosys.2025.113293","DOIUrl":null,"url":null,"abstract":"<div><div>Global information and spatial texture are fundamental for optimizing the performance of segmentation networks. Although atrous convolution effectively enlarges receptive fields to accommodate multi-scale features, it cannot capture directional pixel correlations adequately. Moreover, fusing features from different levels via summation or concatenation can introduce substantial noise, compromising segmentation quality. To address these issues, we developed the Attention-Guided Filtering and Refinement Feature Network (FRFN), which enhances global information representation in deeper layers while minimizing noise in shallow features. The Dense Pyramid Attention Module (DPAM) embedded within FRFN captures multi-scale, long-range contextual dependencies. Additionally, the Strip Compression Spatial Block (SCSB) integrated into DPAM extends the long-range pixel interactions through strip convolution. The Enhancement Fusion Module (EFM) also filters noise in shallow features, enhancing the capacity to capture global information. Extensive experiments on the PASCAL VOC 2012 and Cityscapes test datasets, as well as the COCO-Stuff-164K validation set, validate the efficacy of our proposed methods, with FRFN achieving 83.5% and 80.1% <span><math><mi>m</mi></math></span>IoU on the respective test datasets, and 40.18% <span><math><mi>m</mi></math></span>IoU on the COCO-Stuff-164K validation set.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"315 ","pages":"Article 113293"},"PeriodicalIF":7.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attention Guided Filter and Refinement Feature Network for image semantic segmentation\",\"authors\":\"Shusheng Li ,&nbsp;Wenjun Tan ,&nbsp;Liang Wan ,&nbsp;Shufen Zhang ,&nbsp;Changshuai Zhang ,&nbsp;Yanliang Guo ,&nbsp;Jiale Li\",\"doi\":\"10.1016/j.knosys.2025.113293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Global information and spatial texture are fundamental for optimizing the performance of segmentation networks. Although atrous convolution effectively enlarges receptive fields to accommodate multi-scale features, it cannot capture directional pixel correlations adequately. Moreover, fusing features from different levels via summation or concatenation can introduce substantial noise, compromising segmentation quality. To address these issues, we developed the Attention-Guided Filtering and Refinement Feature Network (FRFN), which enhances global information representation in deeper layers while minimizing noise in shallow features. The Dense Pyramid Attention Module (DPAM) embedded within FRFN captures multi-scale, long-range contextual dependencies. Additionally, the Strip Compression Spatial Block (SCSB) integrated into DPAM extends the long-range pixel interactions through strip convolution. The Enhancement Fusion Module (EFM) also filters noise in shallow features, enhancing the capacity to capture global information. Extensive experiments on the PASCAL VOC 2012 and Cityscapes test datasets, as well as the COCO-Stuff-164K validation set, validate the efficacy of our proposed methods, with FRFN achieving 83.5% and 80.1% <span><math><mi>m</mi></math></span>IoU on the respective test datasets, and 40.18% <span><math><mi>m</mi></math></span>IoU on the COCO-Stuff-164K validation set.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"315 \",\"pages\":\"Article 113293\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705125003405\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125003405","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Attention Guided Filter and Refinement Feature Network for image semantic segmentation
Global information and spatial texture are fundamental for optimizing the performance of segmentation networks. Although atrous convolution effectively enlarges receptive fields to accommodate multi-scale features, it cannot capture directional pixel correlations adequately. Moreover, fusing features from different levels via summation or concatenation can introduce substantial noise, compromising segmentation quality. To address these issues, we developed the Attention-Guided Filtering and Refinement Feature Network (FRFN), which enhances global information representation in deeper layers while minimizing noise in shallow features. The Dense Pyramid Attention Module (DPAM) embedded within FRFN captures multi-scale, long-range contextual dependencies. Additionally, the Strip Compression Spatial Block (SCSB) integrated into DPAM extends the long-range pixel interactions through strip convolution. The Enhancement Fusion Module (EFM) also filters noise in shallow features, enhancing the capacity to capture global information. Extensive experiments on the PASCAL VOC 2012 and Cityscapes test datasets, as well as the COCO-Stuff-164K validation set, validate the efficacy of our proposed methods, with FRFN achieving 83.5% and 80.1% mIoU on the respective test datasets, and 40.18% mIoU on the COCO-Stuff-164K validation set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信