IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
J.A. Gil-Corrales , C.A. Dagua-Conda , M.E. Mora-Ramos , A.L. Morales , C.A. Duque
{"title":"Shape and size effects on electronic thermodynamics in nanoscopic quantum dots","authors":"J.A. Gil-Corrales ,&nbsp;C.A. Dagua-Conda ,&nbsp;M.E. Mora-Ramos ,&nbsp;A.L. Morales ,&nbsp;C.A. Duque","doi":"10.1016/j.physe.2025.116228","DOIUrl":null,"url":null,"abstract":"<div><div>The thermodynamic properties of strongly confined semiconductor nanostructures are significantly influenced by their geometry because the thermal de Broglie wavelength of the particles is comparable to the size of the structure. GaAs quantum dots (QDs) are nanostructures that can be configured in various geometrical forms, which makes them excellent candidates for studying how geometrical variations affect their thermodynamic properties. In this work, we present the study of the thermodynamic properties of a GaAs QD in spherical, cylindrical, cubic, and pyramidal shapes, through the finite element method (FEM) considering external infinite confinement and the effective mass approximation. The design of QDs guarantees the same volume (V) and cross-sectional area (A) for each case, providing structures with similar size characteristics. We observe stepwise behaviors in the particle number and entropy as a function of chemical potential due to shape dependence for the highest confinement configuration, which agrees with the nature of the Fermi–Dirac distribution function. Finally, we present the effect of geometrical shape for all geometrical configurations of the QD. We compare the thermodynamic properties of each arrangement and investigate the heat capacity response for different temperatures.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"170 ","pages":"Article 116228"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725000530","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

强约束半导体纳米结构的热力学性质受其几何形状的影响很大,因为粒子的热德布罗格利波长与结构的尺寸相当。砷化镓量子点(QDs)是一种可以配置成各种几何形状的纳米结构,这使它们成为研究几何变化如何影响其热力学性质的绝佳候选材料。在这项工作中,我们通过有限元法(FEM)研究了球形、圆柱形、立方体和金字塔形 GaAs QD 的热力学性质,并考虑了外部无限约束和有效质量近似。QDs 的设计保证了每种情况下相同的体积(V)和横截面积(A),从而提供了具有相似尺寸特征的结构。我们观察到,在最高约束配置下,由于形状依赖性,粒子数和熵随化学势的变化呈阶梯状变化,这与费米-狄拉克分布函数的性质相吻合。最后,我们介绍了 QD 所有几何构型的几何形状效应。我们比较了每种排列的热力学特性,并研究了不同温度下的热容量响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shape and size effects on electronic thermodynamics in nanoscopic quantum dots
The thermodynamic properties of strongly confined semiconductor nanostructures are significantly influenced by their geometry because the thermal de Broglie wavelength of the particles is comparable to the size of the structure. GaAs quantum dots (QDs) are nanostructures that can be configured in various geometrical forms, which makes them excellent candidates for studying how geometrical variations affect their thermodynamic properties. In this work, we present the study of the thermodynamic properties of a GaAs QD in spherical, cylindrical, cubic, and pyramidal shapes, through the finite element method (FEM) considering external infinite confinement and the effective mass approximation. The design of QDs guarantees the same volume (V) and cross-sectional area (A) for each case, providing structures with similar size characteristics. We observe stepwise behaviors in the particle number and entropy as a function of chemical potential due to shape dependence for the highest confinement configuration, which agrees with the nature of the Fermi–Dirac distribution function. Finally, we present the effect of geometrical shape for all geometrical configurations of the QD. We compare the thermodynamic properties of each arrangement and investigate the heat capacity response for different temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信