Georgios Angelopoulos , Luigi Mangiacapra , Alessandra Rossi , Claudia Di Napoli , Silvia Rossi
{"title":"幕后是什么?利用人类偏好和解释提高强化学习的透明度","authors":"Georgios Angelopoulos , Luigi Mangiacapra , Alessandra Rossi , Claudia Di Napoli , Silvia Rossi","doi":"10.1016/j.engappai.2025.110520","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we investigate whether the transparency of a robot’s behaviour is improved when human preferences on the actions the robot performs are taken into account during the learning process. For this purpose, a shielding mechanism called <em>Preference Shielding</em> is proposed and included in a reinforcement learning algorithm to account for human preferences. We also use the shielding to decide when to provide explanations of the robot’s actions. We carried out a within-subjects study involving 26 participants to evaluate the robot’s transparency. Results indicate that considering human preferences during learning improves legibility compared with providing only explanations. In addition, combining human preferences and explanations further amplifies transparency. Results also confirm that increased transparency leads to an increase in people’s perception of the robot’s safety, comfort, and reliability. These findings show the importance of transparency during learning and suggest a paradigm for robotic applications when a robot has to learn a task in the presence of or in collaboration with a human.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"149 ","pages":"Article 110520"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What is behind the curtain? Increasing transparency in reinforcement learning with human preferences and explanations\",\"authors\":\"Georgios Angelopoulos , Luigi Mangiacapra , Alessandra Rossi , Claudia Di Napoli , Silvia Rossi\",\"doi\":\"10.1016/j.engappai.2025.110520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, we investigate whether the transparency of a robot’s behaviour is improved when human preferences on the actions the robot performs are taken into account during the learning process. For this purpose, a shielding mechanism called <em>Preference Shielding</em> is proposed and included in a reinforcement learning algorithm to account for human preferences. We also use the shielding to decide when to provide explanations of the robot’s actions. We carried out a within-subjects study involving 26 participants to evaluate the robot’s transparency. Results indicate that considering human preferences during learning improves legibility compared with providing only explanations. In addition, combining human preferences and explanations further amplifies transparency. Results also confirm that increased transparency leads to an increase in people’s perception of the robot’s safety, comfort, and reliability. These findings show the importance of transparency during learning and suggest a paradigm for robotic applications when a robot has to learn a task in the presence of or in collaboration with a human.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"149 \",\"pages\":\"Article 110520\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197625005202\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625005202","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
What is behind the curtain? Increasing transparency in reinforcement learning with human preferences and explanations
In this work, we investigate whether the transparency of a robot’s behaviour is improved when human preferences on the actions the robot performs are taken into account during the learning process. For this purpose, a shielding mechanism called Preference Shielding is proposed and included in a reinforcement learning algorithm to account for human preferences. We also use the shielding to decide when to provide explanations of the robot’s actions. We carried out a within-subjects study involving 26 participants to evaluate the robot’s transparency. Results indicate that considering human preferences during learning improves legibility compared with providing only explanations. In addition, combining human preferences and explanations further amplifies transparency. Results also confirm that increased transparency leads to an increase in people’s perception of the robot’s safety, comfort, and reliability. These findings show the importance of transparency during learning and suggest a paradigm for robotic applications when a robot has to learn a task in the presence of or in collaboration with a human.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.