代码模型中的中毒源代码检测

IF 4.1 2区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Ehab Ghannoum, Mohammad Ghafari
{"title":"代码模型中的中毒源代码检测","authors":"Ehab Ghannoum,&nbsp;Mohammad Ghafari","doi":"10.1016/j.jss.2025.112384","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning models have gained popularity for conducting various tasks involving source code. However, their black-box nature raises concerns about potential risks. One such risk is a poisoning attack, where an attacker intentionally contaminates the training set with malicious samples to mislead the model’s predictions in specific scenarios. To protect source code models from poisoning attacks, we introduce CodeGarrison (CG), a hybrid deep-learning model that relies on code embeddings to identify poisoned code samples. We evaluated CG against the state-of-the-art technique ONION for detecting poisoned samples generated by DAMP, MHM, ALERT, as well as a novel poisoning technique named CodeFooler. Results showed that CG significantly outperformed ONION with an accuracy of 93.5%. We also tested CG’s robustness against unknown attacks, achieving an average accuracy of 85.6% in identifying poisoned samples across the four attacks mentioned above.</div></div>","PeriodicalId":51099,"journal":{"name":"Journal of Systems and Software","volume":"226 ","pages":"Article 112384"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poisoned source code detection in code models\",\"authors\":\"Ehab Ghannoum,&nbsp;Mohammad Ghafari\",\"doi\":\"10.1016/j.jss.2025.112384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep learning models have gained popularity for conducting various tasks involving source code. However, their black-box nature raises concerns about potential risks. One such risk is a poisoning attack, where an attacker intentionally contaminates the training set with malicious samples to mislead the model’s predictions in specific scenarios. To protect source code models from poisoning attacks, we introduce CodeGarrison (CG), a hybrid deep-learning model that relies on code embeddings to identify poisoned code samples. We evaluated CG against the state-of-the-art technique ONION for detecting poisoned samples generated by DAMP, MHM, ALERT, as well as a novel poisoning technique named CodeFooler. Results showed that CG significantly outperformed ONION with an accuracy of 93.5%. We also tested CG’s robustness against unknown attacks, achieving an average accuracy of 85.6% in identifying poisoned samples across the four attacks mentioned above.</div></div>\",\"PeriodicalId\":51099,\"journal\":{\"name\":\"Journal of Systems and Software\",\"volume\":\"226 \",\"pages\":\"Article 112384\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems and Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0164121225000524\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems and Software","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0164121225000524","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

深度学习模型因执行涉及源代码的各种任务而受到欢迎。然而,它们的黑箱性质引发了人们对潜在风险的担忧。其中一种风险是中毒攻击,攻击者故意用恶意样本污染训练集,以误导模型在特定场景中的预测。为了保护源代码模型免受中毒攻击,我们引入了CodeGarrison (CG),这是一种混合深度学习模型,它依赖于代码嵌入来识别中毒代码样本。我们将CG与最先进的洋葱技术进行了对比,以检测由DAMP, MHM, ALERT产生的中毒样本,以及一种名为CodeFooler的新型中毒技术。结果表明,CG显著优于ONION,准确率为93.5%。我们还测试了CG对未知攻击的鲁棒性,在上述四种攻击中识别有毒样本的平均准确率为85.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poisoned source code detection in code models
Deep learning models have gained popularity for conducting various tasks involving source code. However, their black-box nature raises concerns about potential risks. One such risk is a poisoning attack, where an attacker intentionally contaminates the training set with malicious samples to mislead the model’s predictions in specific scenarios. To protect source code models from poisoning attacks, we introduce CodeGarrison (CG), a hybrid deep-learning model that relies on code embeddings to identify poisoned code samples. We evaluated CG against the state-of-the-art technique ONION for detecting poisoned samples generated by DAMP, MHM, ALERT, as well as a novel poisoning technique named CodeFooler. Results showed that CG significantly outperformed ONION with an accuracy of 93.5%. We also tested CG’s robustness against unknown attacks, achieving an average accuracy of 85.6% in identifying poisoned samples across the four attacks mentioned above.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Systems and Software
Journal of Systems and Software 工程技术-计算机:理论方法
CiteScore
8.60
自引率
5.70%
发文量
193
审稿时长
16 weeks
期刊介绍: The Journal of Systems and Software publishes papers covering all aspects of software engineering and related hardware-software-systems issues. All articles should include a validation of the idea presented, e.g. through case studies, experiments, or systematic comparisons with other approaches already in practice. Topics of interest include, but are not limited to: •Methods and tools for, and empirical studies on, software requirements, design, architecture, verification and validation, maintenance and evolution •Agile, model-driven, service-oriented, open source and global software development •Approaches for mobile, multiprocessing, real-time, distributed, cloud-based, dependable and virtualized systems •Human factors and management concerns of software development •Data management and big data issues of software systems •Metrics and evaluation, data mining of software development resources •Business and economic aspects of software development processes The journal welcomes state-of-the-art surveys and reports of practical experience for all of these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信