评估预测港口微电网电力需求的机器学习模型的比较框架

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Alexander Micallef , Maurice Apap , John Licari , Cyril Spiteri Staines , Zhaoxia Xiao
{"title":"评估预测港口微电网电力需求的机器学习模型的比较框架","authors":"Alexander Micallef ,&nbsp;Maurice Apap ,&nbsp;John Licari ,&nbsp;Cyril Spiteri Staines ,&nbsp;Zhaoxia Xiao","doi":"10.1016/j.egyai.2025.100494","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a framework for forecasting electricity demand in port microgrids using advanced machine learning models, including Random Forest, Least Squares Boosting Ensemble, and Gaussian Process Regression. These models were evaluated under different forecasting setups (fixed origin, expanding windows, and rolling windows) and compared against simpler baseline methods, such as Linear Regression and Naive models. The study assessed the effectiveness of machine learning models in handling dynamic electricity demand patterns in port environments and highlighted the advantages of data-driven models. Results indicate that the Random Forest (expanding window) model outperforms the other models, achieving a root mean square error of 1.1848 MW and a mean average percentage error of 7.2483 %. Gaussian Process Regression with Exponential kernel follows closely with a root mean square error of 1.1904 MW and a mean average percentage error of 7.5017 %. In contrast, the Naive Method (previous day) shows the poorest performance with a root mean square error of 4.5357 MW and a mean average percentage error of 18.1485 %. Partial Dependence Plots reveal that features such as weighted port calls play a significant role in improving prediction accuracy. These findings highlight the effectiveness of machine learning models in accurately forecasting port microgrid demand and optimizing energy management.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"20 ","pages":"Article 100494"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative framework for evaluating machine learning models in forecasting electricity demand for port microgrids\",\"authors\":\"Alexander Micallef ,&nbsp;Maurice Apap ,&nbsp;John Licari ,&nbsp;Cyril Spiteri Staines ,&nbsp;Zhaoxia Xiao\",\"doi\":\"10.1016/j.egyai.2025.100494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a framework for forecasting electricity demand in port microgrids using advanced machine learning models, including Random Forest, Least Squares Boosting Ensemble, and Gaussian Process Regression. These models were evaluated under different forecasting setups (fixed origin, expanding windows, and rolling windows) and compared against simpler baseline methods, such as Linear Regression and Naive models. The study assessed the effectiveness of machine learning models in handling dynamic electricity demand patterns in port environments and highlighted the advantages of data-driven models. Results indicate that the Random Forest (expanding window) model outperforms the other models, achieving a root mean square error of 1.1848 MW and a mean average percentage error of 7.2483 %. Gaussian Process Regression with Exponential kernel follows closely with a root mean square error of 1.1904 MW and a mean average percentage error of 7.5017 %. In contrast, the Naive Method (previous day) shows the poorest performance with a root mean square error of 4.5357 MW and a mean average percentage error of 18.1485 %. Partial Dependence Plots reveal that features such as weighted port calls play a significant role in improving prediction accuracy. These findings highlight the effectiveness of machine learning models in accurately forecasting port microgrid demand and optimizing energy management.</div></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"20 \",\"pages\":\"Article 100494\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546825000266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个框架,用于使用先进的机器学习模型预测港口微电网的电力需求,包括随机森林、最小二乘增强集成和高斯过程回归。这些模型在不同的预测设置(固定原点、扩展窗口和滚动窗口)下进行了评估,并与简单的基线方法(如线性回归和朴素模型)进行了比较。该研究评估了机器学习模型在处理港口环境中动态电力需求模式方面的有效性,并强调了数据驱动模型的优势。结果表明,随机森林(扩展窗口)模型优于其他模型,其均方根误差为1.1848 MW,平均百分比误差为7.2483%。具有指数核的高斯过程回归紧随其后,均方根误差为1.1904 MW,平均百分比误差为7.5017%。相比之下,朴素方法(前一天)的性能最差,均方根误差为4.5357 MW,平均百分比误差为18.1485%。部分依赖图显示,加权港口呼叫等特征在提高预测精度方面发挥了重要作用。这些发现突出了机器学习模型在准确预测港口微电网需求和优化能源管理方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative framework for evaluating machine learning models in forecasting electricity demand for port microgrids
This study presents a framework for forecasting electricity demand in port microgrids using advanced machine learning models, including Random Forest, Least Squares Boosting Ensemble, and Gaussian Process Regression. These models were evaluated under different forecasting setups (fixed origin, expanding windows, and rolling windows) and compared against simpler baseline methods, such as Linear Regression and Naive models. The study assessed the effectiveness of machine learning models in handling dynamic electricity demand patterns in port environments and highlighted the advantages of data-driven models. Results indicate that the Random Forest (expanding window) model outperforms the other models, achieving a root mean square error of 1.1848 MW and a mean average percentage error of 7.2483 %. Gaussian Process Regression with Exponential kernel follows closely with a root mean square error of 1.1904 MW and a mean average percentage error of 7.5017 %. In contrast, the Naive Method (previous day) shows the poorest performance with a root mean square error of 4.5357 MW and a mean average percentage error of 18.1485 %. Partial Dependence Plots reveal that features such as weighted port calls play a significant role in improving prediction accuracy. These findings highlight the effectiveness of machine learning models in accurately forecasting port microgrid demand and optimizing energy management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信