基于群簇状态的不可逆对称保护拓扑序

IF 15.7 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Christopher Fechisin, Nathanan Tantivasadakarn, Victor V. Albert
{"title":"基于群簇状态的不可逆对称保护拓扑序","authors":"Christopher Fechisin, Nathanan Tantivasadakarn, Victor V. Albert","doi":"10.1103/physrevx.15.011058","DOIUrl":null,"url":null,"abstract":"Despite growing interest in beyond-group symmetries in quantum condensed matter systems, there are relatively few microscopic lattice models explicitly realizing these symmetries, and many phenomena have yet to be studied at the microscopic level. We introduce a one-dimensional stabilizer Hamiltonian composed of group-based Pauli operators whose ground state is a G</a:mi>×</a:mo>Rep</a:mi>(</a:mo>G</a:mi>)</a:mo></a:math>-symmetric state: the <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>G</e:mi></e:math>-cluster state introduced by Brell []. We show that this state lies in a symmetry-protected topological (SPT) phase protected by <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>G</g:mi><g:mo>×</g:mo><g:mi>Rep</g:mi><g:mo stretchy=\"false\">(</g:mo><g:mi>G</g:mi><g:mo stretchy=\"false\">)</g:mo></g:math> symmetry, distinct from the symmetric product state by a duality argument. We identify several signatures of SPT order, namely, protected edge modes, string order parameters, and topological response. We discuss how <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>G</k:mi></k:math>-cluster states may be used as a universal resource for measurement-based quantum computation, explicitly working out the case where <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>G</m:mi></m:math> is a semidirect product of Abelian groups. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"16 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noninvertible Symmetry-Protected Topological Order in a Group-Based Cluster State\",\"authors\":\"Christopher Fechisin, Nathanan Tantivasadakarn, Victor V. Albert\",\"doi\":\"10.1103/physrevx.15.011058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite growing interest in beyond-group symmetries in quantum condensed matter systems, there are relatively few microscopic lattice models explicitly realizing these symmetries, and many phenomena have yet to be studied at the microscopic level. We introduce a one-dimensional stabilizer Hamiltonian composed of group-based Pauli operators whose ground state is a G</a:mi>×</a:mo>Rep</a:mi>(</a:mo>G</a:mi>)</a:mo></a:math>-symmetric state: the <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mi>G</e:mi></e:math>-cluster state introduced by Brell []. We show that this state lies in a symmetry-protected topological (SPT) phase protected by <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mi>G</g:mi><g:mo>×</g:mo><g:mi>Rep</g:mi><g:mo stretchy=\\\"false\\\">(</g:mo><g:mi>G</g:mi><g:mo stretchy=\\\"false\\\">)</g:mo></g:math> symmetry, distinct from the symmetric product state by a duality argument. We identify several signatures of SPT order, namely, protected edge modes, string order parameters, and topological response. We discuss how <k:math xmlns:k=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><k:mi>G</k:mi></k:math>-cluster states may be used as a universal resource for measurement-based quantum computation, explicitly working out the case where <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:mi>G</m:mi></m:math> is a semidirect product of Abelian groups. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.15.011058\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.011058","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管人们对量子凝聚态系统中的群外对称性越来越感兴趣,但明确实现这些对称性的微观晶格模型相对较少,许多现象尚未在微观水平上进行研究。我们引入了一个由基于群的泡利算子组成的一维稳定器哈密顿算子,其基态为G×Rep(G)对称态:由Brell[]引入的G簇态。我们证明了这种状态存在于一个受G×Rep(G)对称性保护的对称保护拓扑(SPT)相中,通过对偶参数与对称积态不同。我们确定了SPT顺序的几个特征,即保护边模式、字符串顺序参数和拓扑响应。我们讨论了如何将G簇态用作基于测量的量子计算的通用资源,明确地计算出G是阿贝尔群的半直积的情况。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noninvertible Symmetry-Protected Topological Order in a Group-Based Cluster State
Despite growing interest in beyond-group symmetries in quantum condensed matter systems, there are relatively few microscopic lattice models explicitly realizing these symmetries, and many phenomena have yet to be studied at the microscopic level. We introduce a one-dimensional stabilizer Hamiltonian composed of group-based Pauli operators whose ground state is a G×Rep(G)-symmetric state: the G-cluster state introduced by Brell []. We show that this state lies in a symmetry-protected topological (SPT) phase protected by G×Rep(G) symmetry, distinct from the symmetric product state by a duality argument. We identify several signatures of SPT order, namely, protected edge modes, string order parameters, and topological response. We discuss how G-cluster states may be used as a universal resource for measurement-based quantum computation, explicitly working out the case where G is a semidirect product of Abelian groups. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信