Rodolfo Araya, Christopher Harder, Abner H. Poza, Frédéric Valentin
{"title":"Stokes和Brinkman方程的多尺度混合-混合方法-先验分析","authors":"Rodolfo Araya, Christopher Harder, Abner H. Poza, Frédéric Valentin","doi":"10.1137/24m1649368","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 588-618, April 2025. <br/> Abstract. The multiscale hybrid-mixed (MHM) method for the Stokes operator was formally introduced in [R. Araya et al., Comput. Methods Appl. Mech. Engrg., 324, pp. 29–53, 2017] and numerically validated. The method has face degrees of freedom associated with multiscale basis functions computed from local Neumann problems driven by discontinuous polynomial spaces on skeletal meshes. The two-level MHM version approximates the multiscale basis using a stabilized finite element method. This work proposes the first numerical analysis for the one- and two-level MHM method applied to the Stokes/Brinkman equations within a new abstract framework relating MHM methods to discrete primal hybrid formulations. As a result, we generalize the two-level MHM method to include general second-level solvers and continuous polynomial interpolation on faces and establish abstract conditions to have those methods well-posed and optimally convergent on natural norms. We apply the abstract setting to analyze the MHM methods using stabilized and stable finite element methods as second-level solvers with (dis)continuous interpolation on faces. Also, we find that the discrete velocity and pressure variables preserve the balance of forces and conservation of mass at the element level. Numerical benchmarks assess theoretical results.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"16 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Hybrid-Mixed Methods for the Stokes and Brinkman Equations—A Priori Analysis\",\"authors\":\"Rodolfo Araya, Christopher Harder, Abner H. Poza, Frédéric Valentin\",\"doi\":\"10.1137/24m1649368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 588-618, April 2025. <br/> Abstract. The multiscale hybrid-mixed (MHM) method for the Stokes operator was formally introduced in [R. Araya et al., Comput. Methods Appl. Mech. Engrg., 324, pp. 29–53, 2017] and numerically validated. The method has face degrees of freedom associated with multiscale basis functions computed from local Neumann problems driven by discontinuous polynomial spaces on skeletal meshes. The two-level MHM version approximates the multiscale basis using a stabilized finite element method. This work proposes the first numerical analysis for the one- and two-level MHM method applied to the Stokes/Brinkman equations within a new abstract framework relating MHM methods to discrete primal hybrid formulations. As a result, we generalize the two-level MHM method to include general second-level solvers and continuous polynomial interpolation on faces and establish abstract conditions to have those methods well-posed and optimally convergent on natural norms. We apply the abstract setting to analyze the MHM methods using stabilized and stable finite element methods as second-level solvers with (dis)continuous interpolation on faces. Also, we find that the discrete velocity and pressure variables preserve the balance of forces and conservation of mass at the element level. Numerical benchmarks assess theoretical results.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1649368\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1649368","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Multiscale Hybrid-Mixed Methods for the Stokes and Brinkman Equations—A Priori Analysis
SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 588-618, April 2025. Abstract. The multiscale hybrid-mixed (MHM) method for the Stokes operator was formally introduced in [R. Araya et al., Comput. Methods Appl. Mech. Engrg., 324, pp. 29–53, 2017] and numerically validated. The method has face degrees of freedom associated with multiscale basis functions computed from local Neumann problems driven by discontinuous polynomial spaces on skeletal meshes. The two-level MHM version approximates the multiscale basis using a stabilized finite element method. This work proposes the first numerical analysis for the one- and two-level MHM method applied to the Stokes/Brinkman equations within a new abstract framework relating MHM methods to discrete primal hybrid formulations. As a result, we generalize the two-level MHM method to include general second-level solvers and continuous polynomial interpolation on faces and establish abstract conditions to have those methods well-posed and optimally convergent on natural norms. We apply the abstract setting to analyze the MHM methods using stabilized and stable finite element methods as second-level solvers with (dis)continuous interpolation on faces. Also, we find that the discrete velocity and pressure variables preserve the balance of forces and conservation of mass at the element level. Numerical benchmarks assess theoretical results.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.