Stokes和Brinkman方程的多尺度混合-混合方法-先验分析

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Rodolfo Araya, Christopher Harder, Abner H. Poza, Frédéric Valentin
{"title":"Stokes和Brinkman方程的多尺度混合-混合方法-先验分析","authors":"Rodolfo Araya, Christopher Harder, Abner H. Poza, Frédéric Valentin","doi":"10.1137/24m1649368","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 588-618, April 2025. <br/> Abstract. The multiscale hybrid-mixed (MHM) method for the Stokes operator was formally introduced in [R. Araya et al., Comput. Methods Appl. Mech. Engrg., 324, pp. 29–53, 2017] and numerically validated. The method has face degrees of freedom associated with multiscale basis functions computed from local Neumann problems driven by discontinuous polynomial spaces on skeletal meshes. The two-level MHM version approximates the multiscale basis using a stabilized finite element method. This work proposes the first numerical analysis for the one- and two-level MHM method applied to the Stokes/Brinkman equations within a new abstract framework relating MHM methods to discrete primal hybrid formulations. As a result, we generalize the two-level MHM method to include general second-level solvers and continuous polynomial interpolation on faces and establish abstract conditions to have those methods well-posed and optimally convergent on natural norms. We apply the abstract setting to analyze the MHM methods using stabilized and stable finite element methods as second-level solvers with (dis)continuous interpolation on faces. Also, we find that the discrete velocity and pressure variables preserve the balance of forces and conservation of mass at the element level. Numerical benchmarks assess theoretical results.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"16 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale Hybrid-Mixed Methods for the Stokes and Brinkman Equations—A Priori Analysis\",\"authors\":\"Rodolfo Araya, Christopher Harder, Abner H. Poza, Frédéric Valentin\",\"doi\":\"10.1137/24m1649368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 588-618, April 2025. <br/> Abstract. The multiscale hybrid-mixed (MHM) method for the Stokes operator was formally introduced in [R. Araya et al., Comput. Methods Appl. Mech. Engrg., 324, pp. 29–53, 2017] and numerically validated. The method has face degrees of freedom associated with multiscale basis functions computed from local Neumann problems driven by discontinuous polynomial spaces on skeletal meshes. The two-level MHM version approximates the multiscale basis using a stabilized finite element method. This work proposes the first numerical analysis for the one- and two-level MHM method applied to the Stokes/Brinkman equations within a new abstract framework relating MHM methods to discrete primal hybrid formulations. As a result, we generalize the two-level MHM method to include general second-level solvers and continuous polynomial interpolation on faces and establish abstract conditions to have those methods well-posed and optimally convergent on natural norms. We apply the abstract setting to analyze the MHM methods using stabilized and stable finite element methods as second-level solvers with (dis)continuous interpolation on faces. Also, we find that the discrete velocity and pressure variables preserve the balance of forces and conservation of mass at the element level. Numerical benchmarks assess theoretical results.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1649368\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1649368","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM数值分析杂志,第63卷,第2期,第588-618页,2025年4月。摘要。本文正式引入Stokes算子的多尺度混合-混合(MHM)方法。Araya等人,计算机。方法:。动力机械。Engrg。科学进展,324,pp 29-53, 2017]并进行了数值验证。该方法具有与骨架网格上由不连续多项式空间驱动的局部诺伊曼问题计算的多尺度基函数相关联的面自由度。两级MHM版本使用稳定有限元法近似多尺度基。这项工作提出了应用于Stokes/Brinkman方程的一级和二级MHM方法的第一个数值分析,在一个新的抽象框架内将MHM方法与离散原始混合公式联系起来。因此,我们将两级MHM方法推广到包括一般的二级解和面上的连续多项式插值,并建立了这些方法在自然范数上的适定和最优收敛的抽象条件。本文应用抽象设置,分析了用稳定有限元法和稳定有限元法作为二级求解器,在面上(非)连续插值的MHM方法。此外,我们发现离散的速度和压力变量在单元水平上保持了力的平衡和质量的守恒。数值基准评估理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale Hybrid-Mixed Methods for the Stokes and Brinkman Equations—A Priori Analysis
SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 588-618, April 2025.
Abstract. The multiscale hybrid-mixed (MHM) method for the Stokes operator was formally introduced in [R. Araya et al., Comput. Methods Appl. Mech. Engrg., 324, pp. 29–53, 2017] and numerically validated. The method has face degrees of freedom associated with multiscale basis functions computed from local Neumann problems driven by discontinuous polynomial spaces on skeletal meshes. The two-level MHM version approximates the multiscale basis using a stabilized finite element method. This work proposes the first numerical analysis for the one- and two-level MHM method applied to the Stokes/Brinkman equations within a new abstract framework relating MHM methods to discrete primal hybrid formulations. As a result, we generalize the two-level MHM method to include general second-level solvers and continuous polynomial interpolation on faces and establish abstract conditions to have those methods well-posed and optimally convergent on natural norms. We apply the abstract setting to analyze the MHM methods using stabilized and stable finite element methods as second-level solvers with (dis)continuous interpolation on faces. Also, we find that the discrete velocity and pressure variables preserve the balance of forces and conservation of mass at the element level. Numerical benchmarks assess theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信