随机二维行列式超树的模2同调的界

IF 1 2区 数学 Q1 MATHEMATICS
András Mészáros
{"title":"随机二维行列式超树的模2同调的界","authors":"András Mészáros","doi":"10.1007/s00493-025-00142-6","DOIUrl":null,"url":null,"abstract":"<p>As a first step towards a conjecture of Kahle and Newman, we prove that if <span>\\(T_n\\)</span> is a random 2-dimensional determinantal hypertree on <i>n</i> vertices, then </p><span>$$\\begin{aligned} \\frac{\\dim H_1(T_n,\\mathbb {F}_2)}{n^2} \\end{aligned}$$</span><p>converges to zero in probability. Confirming a conjecture of Linial and Peled, we also prove the analogous statement for the 1-out 2-complex. Our proof relies on the large deviation principle for the Erdős–Rényi random graph by Chatterjee and Varadhan.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"88 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds on the Mod 2 Homology of Random 2-Dimensional Determinantal Hypertrees\",\"authors\":\"András Mészáros\",\"doi\":\"10.1007/s00493-025-00142-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a first step towards a conjecture of Kahle and Newman, we prove that if <span>\\\\(T_n\\\\)</span> is a random 2-dimensional determinantal hypertree on <i>n</i> vertices, then </p><span>$$\\\\begin{aligned} \\\\frac{\\\\dim H_1(T_n,\\\\mathbb {F}_2)}{n^2} \\\\end{aligned}$$</span><p>converges to zero in probability. Confirming a conjecture of Linial and Peled, we also prove the analogous statement for the 1-out 2-complex. Our proof relies on the large deviation principle for the Erdős–Rényi random graph by Chatterjee and Varadhan.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-025-00142-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00142-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

作为Kahle和Newman猜想的第一步,我们证明了如果\(T_n\)是n个顶点上的随机二维行列式超树,那么$$\begin{aligned} \frac{\dim H_1(T_n,\mathbb {F}_2)}{n^2} \end{aligned}$$在概率上收敛为零。我们证实了Linial和Peled的一个猜想,并证明了1-out - 2络合物的类似命题。我们的证明依赖于Chatterjee和Varadhan的Erdős-Rényi随机图的大偏差原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounds on the Mod 2 Homology of Random 2-Dimensional Determinantal Hypertrees

As a first step towards a conjecture of Kahle and Newman, we prove that if \(T_n\) is a random 2-dimensional determinantal hypertree on n vertices, then

$$\begin{aligned} \frac{\dim H_1(T_n,\mathbb {F}_2)}{n^2} \end{aligned}$$

converges to zero in probability. Confirming a conjecture of Linial and Peled, we also prove the analogous statement for the 1-out 2-complex. Our proof relies on the large deviation principle for the Erdős–Rényi random graph by Chatterjee and Varadhan.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信