改进的Chen-Chvátal猜想的下界

IF 1 2区 数学 Q1 MATHEMATICS
Congkai Huang
{"title":"改进的Chen-Chvátal猜想的下界","authors":"Congkai Huang","doi":"10.1007/s00493-025-00137-3","DOIUrl":null,"url":null,"abstract":"<p>We prove that in every metric space where no line contains all the points, there are at least <span>\\(\\Omega (n^{2/3})\\)</span> lines. This improves the previous <span>\\(\\Omega (\\sqrt{n})\\)</span> lower bound on the number of lines in general metric space, and also improves the previous <span>\\(\\Omega (n^{4/7})\\)</span> lower bound on the number of lines in metric spaces generated by connected graphs.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"86 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Lower Bound Towards Chen–Chvátal Conjecture\",\"authors\":\"Congkai Huang\",\"doi\":\"10.1007/s00493-025-00137-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that in every metric space where no line contains all the points, there are at least <span>\\\\(\\\\Omega (n^{2/3})\\\\)</span> lines. This improves the previous <span>\\\\(\\\\Omega (\\\\sqrt{n})\\\\)</span> lower bound on the number of lines in general metric space, and also improves the previous <span>\\\\(\\\\Omega (n^{4/7})\\\\)</span> lower bound on the number of lines in metric spaces generated by connected graphs.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-025-00137-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00137-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在任何没有直线包含所有点的度规空间中,至少存在\(\Omega (n^{2/3})\)条直线。这改进了前面一般度量空间中行数的\(\Omega (\sqrt{n})\)下界,也改进了前面由连通图生成的度量空间中行数的\(\Omega (n^{4/7})\)下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Lower Bound Towards Chen–Chvátal Conjecture

We prove that in every metric space where no line contains all the points, there are at least \(\Omega (n^{2/3})\) lines. This improves the previous \(\Omega (\sqrt{n})\) lower bound on the number of lines in general metric space, and also improves the previous \(\Omega (n^{4/7})\) lower bound on the number of lines in metric spaces generated by connected graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信