Xiaopeng Yang;Zixiang Yin;Xiaolu Zeng;Jiancheng Liao;Junbo Gong
{"title":"基于利用结构连续性的贝叶斯方法的建筑内部结构感知","authors":"Xiaopeng Yang;Zixiang Yin;Xiaolu Zeng;Jiancheng Liao;Junbo Gong","doi":"10.1109/JIOT.2025.3545739","DOIUrl":null,"url":null,"abstract":"Through-the-wall building interior structure sensing has been greatly serving in various applications, including search-and-rescue operations. However, most existing methods exhibit limitations in imaging the walls and corners with good continuity and recognizable features. In this article, we consider imaging of the building interior structures by extracting the major building elements with structural continuity. Specifically, the signals from a complex building are first modeled as the superposition responses from discrete canonical scatterers, such as planar walls and wall corners. Then, a structural variational Bayesian method is designed to detect and extract these critical structures. This method improves the 1-D continuity of the walls and the 2-D continuity of the corners through a Bayesian hierarchical probabilistic model. Moreover, we incorporate the generalized approximate message-passing technique into the variational expectation maximization method to efficiently estimate the walls and corners simultaneously. Results from both simulated and real data validate the effectiveness of the proposed method in accurately extracting walls and corners with improved continuity, thereby enabling a comprehensive building structure.","PeriodicalId":54347,"journal":{"name":"IEEE Internet of Things Journal","volume":"12 12","pages":"19660-19675"},"PeriodicalIF":8.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building Interior Structures Sensing Based on Bayesian Approach Exploiting Structural Continuity\",\"authors\":\"Xiaopeng Yang;Zixiang Yin;Xiaolu Zeng;Jiancheng Liao;Junbo Gong\",\"doi\":\"10.1109/JIOT.2025.3545739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Through-the-wall building interior structure sensing has been greatly serving in various applications, including search-and-rescue operations. However, most existing methods exhibit limitations in imaging the walls and corners with good continuity and recognizable features. In this article, we consider imaging of the building interior structures by extracting the major building elements with structural continuity. Specifically, the signals from a complex building are first modeled as the superposition responses from discrete canonical scatterers, such as planar walls and wall corners. Then, a structural variational Bayesian method is designed to detect and extract these critical structures. This method improves the 1-D continuity of the walls and the 2-D continuity of the corners through a Bayesian hierarchical probabilistic model. Moreover, we incorporate the generalized approximate message-passing technique into the variational expectation maximization method to efficiently estimate the walls and corners simultaneously. Results from both simulated and real data validate the effectiveness of the proposed method in accurately extracting walls and corners with improved continuity, thereby enabling a comprehensive building structure.\",\"PeriodicalId\":54347,\"journal\":{\"name\":\"IEEE Internet of Things Journal\",\"volume\":\"12 12\",\"pages\":\"19660-19675\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Internet of Things Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10925550/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Internet of Things Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10925550/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Building Interior Structures Sensing Based on Bayesian Approach Exploiting Structural Continuity
Through-the-wall building interior structure sensing has been greatly serving in various applications, including search-and-rescue operations. However, most existing methods exhibit limitations in imaging the walls and corners with good continuity and recognizable features. In this article, we consider imaging of the building interior structures by extracting the major building elements with structural continuity. Specifically, the signals from a complex building are first modeled as the superposition responses from discrete canonical scatterers, such as planar walls and wall corners. Then, a structural variational Bayesian method is designed to detect and extract these critical structures. This method improves the 1-D continuity of the walls and the 2-D continuity of the corners through a Bayesian hierarchical probabilistic model. Moreover, we incorporate the generalized approximate message-passing technique into the variational expectation maximization method to efficiently estimate the walls and corners simultaneously. Results from both simulated and real data validate the effectiveness of the proposed method in accurately extracting walls and corners with improved continuity, thereby enabling a comprehensive building structure.
期刊介绍:
The EEE Internet of Things (IoT) Journal publishes articles and review articles covering various aspects of IoT, including IoT system architecture, IoT enabling technologies, IoT communication and networking protocols such as network coding, and IoT services and applications. Topics encompass IoT's impacts on sensor technologies, big data management, and future internet design for applications like smart cities and smart homes. Fields of interest include IoT architecture such as things-centric, data-centric, service-oriented IoT architecture; IoT enabling technologies and systematic integration such as sensor technologies, big sensor data management, and future Internet design for IoT; IoT services, applications, and test-beds such as IoT service middleware, IoT application programming interface (API), IoT application design, and IoT trials/experiments; IoT standardization activities and technology development in different standard development organizations (SDO) such as IEEE, IETF, ITU, 3GPP, ETSI, etc.