TextIR:一个基于文本的可编辑图像恢复的简单框架。

Yunpeng Bai, Cairong Wang, Shuzhao Xie, Chao Dong, Chun Yuan, Zhi Wang
{"title":"TextIR:一个基于文本的可编辑图像恢复的简单框架。","authors":"Yunpeng Bai, Cairong Wang, Shuzhao Xie, Chao Dong, Chun Yuan, Zhi Wang","doi":"10.1109/TVCG.2025.3550844","DOIUrl":null,"url":null,"abstract":"<p><p>Many current image restoration approaches utilize neural networks to acquire robust image-level priors from extensive datasets, aiming to reconstruct missing details. Nevertheless, these methods often falter with images that exhibit significant information gaps. While incorporating external priors or leveraging reference images can provide supplemental information, these strategies are limited in their practical scope. Alternatively, textual inputs offer greater accessibility and adaptability. In this study, we develop a sophisticated framework enabling users to guide the restoration of deteriorated images via textual descriptions. Utilizing the text-image compatibility feature of CLIP enhances the integration of textual and visual data. Our versatile framework supports multiple restoration activities such as image inpainting, super-resolution, and colorization. Comprehensive testing validates our technique's efficacy.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TextIR: A Simple Framework for Text-based Editable Image Restoration.\",\"authors\":\"Yunpeng Bai, Cairong Wang, Shuzhao Xie, Chao Dong, Chun Yuan, Zhi Wang\",\"doi\":\"10.1109/TVCG.2025.3550844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many current image restoration approaches utilize neural networks to acquire robust image-level priors from extensive datasets, aiming to reconstruct missing details. Nevertheless, these methods often falter with images that exhibit significant information gaps. While incorporating external priors or leveraging reference images can provide supplemental information, these strategies are limited in their practical scope. Alternatively, textual inputs offer greater accessibility and adaptability. In this study, we develop a sophisticated framework enabling users to guide the restoration of deteriorated images via textual descriptions. Utilizing the text-image compatibility feature of CLIP enhances the integration of textual and visual data. Our versatile framework supports multiple restoration activities such as image inpainting, super-resolution, and colorization. Comprehensive testing validates our technique's efficacy.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2025.3550844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3550844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前许多图像恢复方法利用神经网络从大量数据集中获取鲁棒图像级先验,旨在重建缺失的细节。然而,这些方法在处理具有显著信息缺口的图像时往往会出现问题。虽然结合外部先验或利用参考图像可以提供补充信息,但这些策略的实际范围有限。另外,文本输入提供了更好的可访问性和适应性。在本研究中,我们开发了一个复杂的框架,使用户能够通过文本描述指导退化图像的恢复。利用CLIP的文本-图像兼容特性增强了文本和视觉数据的集成。我们的多功能框架支持多种恢复活动,如图像绘制,超分辨率和着色。全面的测试验证了我们技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TextIR: A Simple Framework for Text-based Editable Image Restoration.

Many current image restoration approaches utilize neural networks to acquire robust image-level priors from extensive datasets, aiming to reconstruct missing details. Nevertheless, these methods often falter with images that exhibit significant information gaps. While incorporating external priors or leveraging reference images can provide supplemental information, these strategies are limited in their practical scope. Alternatively, textual inputs offer greater accessibility and adaptability. In this study, we develop a sophisticated framework enabling users to guide the restoration of deteriorated images via textual descriptions. Utilizing the text-image compatibility feature of CLIP enhances the integration of textual and visual data. Our versatile framework supports multiple restoration activities such as image inpainting, super-resolution, and colorization. Comprehensive testing validates our technique's efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信