基于大语言模型的重症监护大数据部署与提取:描述性分析。

IF 3.1 3区 医学 Q2 MEDICAL INFORMATICS
Zhongbao Yang, Shan-Shan Xu, Xiaozhu Liu, Ningyuan Xu, Yuqing Chen, Shuya Wang, Ming-Yue Miao, Mengxue Hou, Shuai Liu, Yi-Min Zhou, Jian-Xin Zhou, Linlin Zhang
{"title":"基于大语言模型的重症监护大数据部署与提取:描述性分析。","authors":"Zhongbao Yang, Shan-Shan Xu, Xiaozhu Liu, Ningyuan Xu, Yuqing Chen, Shuya Wang, Ming-Yue Miao, Mengxue Hou, Shuai Liu, Yi-Min Zhou, Jian-Xin Zhou, Linlin Zhang","doi":"10.2196/63216","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Publicly accessible critical care-related databases contain enormous clinical data, but their utilization often requires advanced programming skills. The growing complexity of large databases and unstructured data presents challenges for clinicians who need programming or data analysis expertise to utilize these systems directly.</p><p><strong>Objective: </strong>This study aims to simplify critical care-related database deployment and extraction via large language models.</p><p><strong>Methods: </strong>The development of this platform was a 2-step process. First, we enabled automated database deployment using Docker container technology, with incorporated web-based analytics interfaces Metabase and Superset. Second, we developed the intensive care unit-generative pretrained transformer (ICU-GPT), a large language model fine-tuned on intensive care unit (ICU) data that integrated LangChain and Microsoft AutoGen.</p><p><strong>Results: </strong>The automated deployment platform was designed with user-friendliness in mind, enabling clinicians to deploy 1 or multiple databases in local, cloud, or remote environments without the need for manual setup. After successfully overcoming GPT's token limit and supporting multischema data, ICU-GPT could generate Structured Query Language (SQL) queries and extract insights from ICU datasets based on request input. A front-end user interface was developed for clinicians to achieve code-free SQL generation on the web-based client.</p><p><strong>Conclusions: </strong>By harnessing the power of our automated deployment platform and ICU-GPT model, clinicians are empowered to easily visualize, extract, and arrange critical care-related databases more efficiently and flexibly than manual methods. Our research could decrease the time and effort spent on complex bioinformatics methods and advance clinical research.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"13 ","pages":"e63216"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922493/pdf/","citationCount":"0","resultStr":"{\"title\":\"Large Language Model-Based Critical Care Big Data Deployment and Extraction: Descriptive Analysis.\",\"authors\":\"Zhongbao Yang, Shan-Shan Xu, Xiaozhu Liu, Ningyuan Xu, Yuqing Chen, Shuya Wang, Ming-Yue Miao, Mengxue Hou, Shuai Liu, Yi-Min Zhou, Jian-Xin Zhou, Linlin Zhang\",\"doi\":\"10.2196/63216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Publicly accessible critical care-related databases contain enormous clinical data, but their utilization often requires advanced programming skills. The growing complexity of large databases and unstructured data presents challenges for clinicians who need programming or data analysis expertise to utilize these systems directly.</p><p><strong>Objective: </strong>This study aims to simplify critical care-related database deployment and extraction via large language models.</p><p><strong>Methods: </strong>The development of this platform was a 2-step process. First, we enabled automated database deployment using Docker container technology, with incorporated web-based analytics interfaces Metabase and Superset. Second, we developed the intensive care unit-generative pretrained transformer (ICU-GPT), a large language model fine-tuned on intensive care unit (ICU) data that integrated LangChain and Microsoft AutoGen.</p><p><strong>Results: </strong>The automated deployment platform was designed with user-friendliness in mind, enabling clinicians to deploy 1 or multiple databases in local, cloud, or remote environments without the need for manual setup. After successfully overcoming GPT's token limit and supporting multischema data, ICU-GPT could generate Structured Query Language (SQL) queries and extract insights from ICU datasets based on request input. A front-end user interface was developed for clinicians to achieve code-free SQL generation on the web-based client.</p><p><strong>Conclusions: </strong>By harnessing the power of our automated deployment platform and ICU-GPT model, clinicians are empowered to easily visualize, extract, and arrange critical care-related databases more efficiently and flexibly than manual methods. Our research could decrease the time and effort spent on complex bioinformatics methods and advance clinical research.</p>\",\"PeriodicalId\":56334,\"journal\":{\"name\":\"JMIR Medical Informatics\",\"volume\":\"13 \",\"pages\":\"e63216\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922493/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Medical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2196/63216\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/63216","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

摘要

背景:可公开访问的重症护理相关数据库包含大量临床数据,但它们的使用通常需要高级编程技能。大型数据库和非结构化数据日益复杂,这对需要编程或数据分析专业知识才能直接利用这些系统的临床医生提出了挑战。目的:本研究旨在通过大型语言模型简化重症护理相关数据库的部署和提取。方法:该平台的开发分为两步。首先,我们使用Docker容器技术,结合基于web的Metabase和Superset分析接口,实现了自动数据库部署。其次,我们开发了重症监护病房生成预训练转换器(ICU- gpt),这是一个大型语言模型,集成了LangChain和Microsoft AutoGen,对重症监护病房(ICU)数据进行了微调。结果:自动部署平台的设计考虑了用户友好性,使临床医生能够在本地、云或远程环境中部署一个或多个数据库,而无需手动设置。在成功克服GPT的令牌限制并支持多模式数据后,ICU-GPT可以生成结构化查询语言(SQL)查询,并根据请求输入从ICU数据集中提取见解。为临床医生开发了一个前端用户界面,以便在基于web的客户端上实现无代码SQL生成。结论:通过利用我们的自动化部署平台和ICU-GPT模型,临床医生可以比手工方法更有效、更灵活地轻松可视化、提取和安排与重症护理相关的数据库。我们的研究可以减少在复杂的生物信息学方法上花费的时间和精力,并推进临床研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Language Model-Based Critical Care Big Data Deployment and Extraction: Descriptive Analysis.

Background: Publicly accessible critical care-related databases contain enormous clinical data, but their utilization often requires advanced programming skills. The growing complexity of large databases and unstructured data presents challenges for clinicians who need programming or data analysis expertise to utilize these systems directly.

Objective: This study aims to simplify critical care-related database deployment and extraction via large language models.

Methods: The development of this platform was a 2-step process. First, we enabled automated database deployment using Docker container technology, with incorporated web-based analytics interfaces Metabase and Superset. Second, we developed the intensive care unit-generative pretrained transformer (ICU-GPT), a large language model fine-tuned on intensive care unit (ICU) data that integrated LangChain and Microsoft AutoGen.

Results: The automated deployment platform was designed with user-friendliness in mind, enabling clinicians to deploy 1 or multiple databases in local, cloud, or remote environments without the need for manual setup. After successfully overcoming GPT's token limit and supporting multischema data, ICU-GPT could generate Structured Query Language (SQL) queries and extract insights from ICU datasets based on request input. A front-end user interface was developed for clinicians to achieve code-free SQL generation on the web-based client.

Conclusions: By harnessing the power of our automated deployment platform and ICU-GPT model, clinicians are empowered to easily visualize, extract, and arrange critical care-related databases more efficiently and flexibly than manual methods. Our research could decrease the time and effort spent on complex bioinformatics methods and advance clinical research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JMIR Medical Informatics
JMIR Medical Informatics Medicine-Health Informatics
CiteScore
7.90
自引率
3.10%
发文量
173
审稿时长
12 weeks
期刊介绍: JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals. Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信