划痕PET概念的初步演示:术中带手持检测器的PET。

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Taiyo Ishikawa, Yuma Iwao, Go Akamatsu, Sodai Takyu, Hideaki Tashima, Takayuki Okamoto, Taiga Yamaya, Hideaki Haneishi
{"title":"划痕PET概念的初步演示:术中带手持检测器的PET。","authors":"Taiyo Ishikawa, Yuma Iwao, Go Akamatsu, Sodai Takyu, Hideaki Tashima, Takayuki Okamoto, Taiga Yamaya, Hideaki Haneishi","doi":"10.1007/s12194-025-00889-z","DOIUrl":null,"url":null,"abstract":"<p><p>Positron emission tomography (PET) is a valuable tool for diagnosing malignant tumors. Intraoperative PET imaging is expected to allow the more accurate localization of tumors that need resections. However, conventional devices feature a large detector ring that obstructs surgical procedures, preventing their intraoperative application. This paper proposes a new PET device, Scratch-PET, for image-guided tumor resection. The key feature of Scratch-PET is its use of a hand-held detector to scan the surgical field, ensuring open space for surgery while measuring annihilation radiation with a fixed detector array placed below the patient. We developed a prototype device using two detectors: the hand-held detector and a fixed detector, to demonstrate the feasibility of the proposed concept. Both detectors consisted of 16 × 16 arrays of lutetium yttrium orthosilicates (3 × 3 × 15 mm<sup>3</sup>) coupled one-to-one with 16 × 16 silicon photomultiplier arrays. The position and orientation of the hand-held detector are tracked using an optical tracking sensor that detects attached markers. We measured a <sup>22</sup>Na multi-rod phantom and two <sup>22</sup>Na point sources separately for 180 s while moving the hand-held detector. The rod diameters were 6.0, 5.0, 4.0, 3.0, 2.2, and 1.6 mm. Each point source was placed at the field-of-view center and 35 mm off-center which was outside the sensitive area when the hand-held detector was positioned facing the fixed detector. The 2.2 mm rods were partially resolved, and both point sources were successfully visualized. The potential of the proposed device to visualize small tumors was validated.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Initial demonstration of the Scratch-PET concept: an intraoperative PET with a hand-held detector.\",\"authors\":\"Taiyo Ishikawa, Yuma Iwao, Go Akamatsu, Sodai Takyu, Hideaki Tashima, Takayuki Okamoto, Taiga Yamaya, Hideaki Haneishi\",\"doi\":\"10.1007/s12194-025-00889-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Positron emission tomography (PET) is a valuable tool for diagnosing malignant tumors. Intraoperative PET imaging is expected to allow the more accurate localization of tumors that need resections. However, conventional devices feature a large detector ring that obstructs surgical procedures, preventing their intraoperative application. This paper proposes a new PET device, Scratch-PET, for image-guided tumor resection. The key feature of Scratch-PET is its use of a hand-held detector to scan the surgical field, ensuring open space for surgery while measuring annihilation radiation with a fixed detector array placed below the patient. We developed a prototype device using two detectors: the hand-held detector and a fixed detector, to demonstrate the feasibility of the proposed concept. Both detectors consisted of 16 × 16 arrays of lutetium yttrium orthosilicates (3 × 3 × 15 mm<sup>3</sup>) coupled one-to-one with 16 × 16 silicon photomultiplier arrays. The position and orientation of the hand-held detector are tracked using an optical tracking sensor that detects attached markers. We measured a <sup>22</sup>Na multi-rod phantom and two <sup>22</sup>Na point sources separately for 180 s while moving the hand-held detector. The rod diameters were 6.0, 5.0, 4.0, 3.0, 2.2, and 1.6 mm. Each point source was placed at the field-of-view center and 35 mm off-center which was outside the sensitive area when the hand-held detector was positioned facing the fixed detector. The 2.2 mm rods were partially resolved, and both point sources were successfully visualized. The potential of the proposed device to visualize small tumors was validated.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-025-00889-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00889-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

正电子发射断层扫描(PET)是诊断恶性肿瘤的重要工具。术中PET成像有望更准确地定位需要切除的肿瘤。然而,传统设备的特点是一个大的探测器环,阻碍了手术过程,阻碍了它们在术中应用。本文提出了一种用于图像引导肿瘤切除的新型PET装置——scratche -PET。Scratch-PET的主要特点是使用手持式探测器扫描手术区域,确保手术的开放空间,同时通过放置在患者下方的固定探测器阵列测量湮灭辐射。我们开发了一个原型装置,使用两个探测器:手持式探测器和固定式探测器,以证明所提出概念的可行性。两个探测器都由16 × 16的正硅酸镥钇阵列(3 × 3 × 15 mm3)与16 × 16硅光电倍增管阵列一对一耦合组成。所述手持式检测器的位置和方向使用检测所附标记的光学跟踪传感器进行跟踪。我们在移动手持式检测器的同时,分别测量了一个22Na多棒体和两个22Na点源,测量时间为180 s。棒直径分别为6.0、5.0、4.0、3.0、2.2和1.6 mm。手持探测器对着固定探测器定位时,每个点源分别放置在视场中心和离中心35mm的敏感区外。2.2 mm棒部分分解,两个点源成功可视化。该装置在观察小肿瘤方面的潜力得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Initial demonstration of the Scratch-PET concept: an intraoperative PET with a hand-held detector.

Positron emission tomography (PET) is a valuable tool for diagnosing malignant tumors. Intraoperative PET imaging is expected to allow the more accurate localization of tumors that need resections. However, conventional devices feature a large detector ring that obstructs surgical procedures, preventing their intraoperative application. This paper proposes a new PET device, Scratch-PET, for image-guided tumor resection. The key feature of Scratch-PET is its use of a hand-held detector to scan the surgical field, ensuring open space for surgery while measuring annihilation radiation with a fixed detector array placed below the patient. We developed a prototype device using two detectors: the hand-held detector and a fixed detector, to demonstrate the feasibility of the proposed concept. Both detectors consisted of 16 × 16 arrays of lutetium yttrium orthosilicates (3 × 3 × 15 mm3) coupled one-to-one with 16 × 16 silicon photomultiplier arrays. The position and orientation of the hand-held detector are tracked using an optical tracking sensor that detects attached markers. We measured a 22Na multi-rod phantom and two 22Na point sources separately for 180 s while moving the hand-held detector. The rod diameters were 6.0, 5.0, 4.0, 3.0, 2.2, and 1.6 mm. Each point source was placed at the field-of-view center and 35 mm off-center which was outside the sensitive area when the hand-held detector was positioned facing the fixed detector. The 2.2 mm rods were partially resolved, and both point sources were successfully visualized. The potential of the proposed device to visualize small tumors was validated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信