大流行期间免疫差距的空间预测为决策提供信息:多米尼加共和国COVID-19的地理统计案例研究

IF 2.6 4区 医学 Q2 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Angela Cadavid Restrepo, Beatris Mario Martin, Helen J Mayfield, Cecilia Then Paulino, Michael de St Aubin, William Duke, Petr Jarolim, Timothy Oasan, Emily Zielinski Gutiérrez, Ronald Skewes Ramm, Devan Dumas, Salome Garnier, Marie Caroline Etienne, Farah Peña, Gabriela Abdalla, Beatriz Lopez, Lucia de la Cruz, Bernarda Henriquez, Margaret Baldwin, Adam Kucharski, Benn Sartorius, Eric J Nilles, Colleen L Lau
{"title":"大流行期间免疫差距的空间预测为决策提供信息:多米尼加共和国COVID-19的地理统计案例研究","authors":"Angela Cadavid Restrepo, Beatris Mario Martin, Helen J Mayfield, Cecilia Then Paulino, Michael de St Aubin, William Duke, Petr Jarolim, Timothy Oasan, Emily Zielinski Gutiérrez, Ronald Skewes Ramm, Devan Dumas, Salome Garnier, Marie Caroline Etienne, Farah Peña, Gabriela Abdalla, Beatriz Lopez, Lucia de la Cruz, Bernarda Henriquez, Margaret Baldwin, Adam Kucharski, Benn Sartorius, Eric J Nilles, Colleen L Lau","doi":"10.1111/tmi.14094","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To demonstrate the application and utility of geostatistical modelling to provide comprehensive high-resolution understanding of the population's protective immunity during a pandemic and identify pockets with sub-optimal protection.</p><p><strong>Methods: </strong>Using data from a national cross-sectional household survey of 6620 individuals in the Dominican Republic (DR) from June to October 2021, we developed and applied geostatistical regression models to estimate and predict Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike (anti-S) antibodies (Ab) seroprevalence at high resolution (1 km) across heterogeneous areas.</p><p><strong>Results: </strong>Spatial patterns in population immunity to SARS-CoV-2 varied across the DR. In urban areas, a one-unit increase in the number of primary healthcare units per population and 1% increase in the proportion of the population aged under 20 years were associated with higher odds ratios of being anti-S Ab positive of 1.38 (95% confidence interval [CI]: 1.35-1.39) and 1.35 (95% CI: 1.32-1.33), respectively. In rural areas, higher odds of anti-S Ab positivity, 1.45 (95% CI: 1.39-1.51), were observed with increasing temperature in the hottest month (per°C), and 1.51 (95% CI: 1.43-1.60) with increasing precipitation in the wettest month (per mm).</p><p><strong>Conclusions: </strong>A geostatistical model that integrates contextually important socioeconomic and environmental factors can be used to create robust and reliable predictive maps of immune protection during a pandemic at high spatial resolution and will assist in the identification of highly vulnerable areas.</p>","PeriodicalId":23962,"journal":{"name":"Tropical Medicine & International Health","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial prediction of immunity gaps during a pandemic to inform decision making: A geostatistical case study of COVID-19 in Dominican Republic.\",\"authors\":\"Angela Cadavid Restrepo, Beatris Mario Martin, Helen J Mayfield, Cecilia Then Paulino, Michael de St Aubin, William Duke, Petr Jarolim, Timothy Oasan, Emily Zielinski Gutiérrez, Ronald Skewes Ramm, Devan Dumas, Salome Garnier, Marie Caroline Etienne, Farah Peña, Gabriela Abdalla, Beatriz Lopez, Lucia de la Cruz, Bernarda Henriquez, Margaret Baldwin, Adam Kucharski, Benn Sartorius, Eric J Nilles, Colleen L Lau\",\"doi\":\"10.1111/tmi.14094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>To demonstrate the application and utility of geostatistical modelling to provide comprehensive high-resolution understanding of the population's protective immunity during a pandemic and identify pockets with sub-optimal protection.</p><p><strong>Methods: </strong>Using data from a national cross-sectional household survey of 6620 individuals in the Dominican Republic (DR) from June to October 2021, we developed and applied geostatistical regression models to estimate and predict Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike (anti-S) antibodies (Ab) seroprevalence at high resolution (1 km) across heterogeneous areas.</p><p><strong>Results: </strong>Spatial patterns in population immunity to SARS-CoV-2 varied across the DR. In urban areas, a one-unit increase in the number of primary healthcare units per population and 1% increase in the proportion of the population aged under 20 years were associated with higher odds ratios of being anti-S Ab positive of 1.38 (95% confidence interval [CI]: 1.35-1.39) and 1.35 (95% CI: 1.32-1.33), respectively. In rural areas, higher odds of anti-S Ab positivity, 1.45 (95% CI: 1.39-1.51), were observed with increasing temperature in the hottest month (per°C), and 1.51 (95% CI: 1.43-1.60) with increasing precipitation in the wettest month (per mm).</p><p><strong>Conclusions: </strong>A geostatistical model that integrates contextually important socioeconomic and environmental factors can be used to create robust and reliable predictive maps of immune protection during a pandemic at high spatial resolution and will assist in the identification of highly vulnerable areas.</p>\",\"PeriodicalId\":23962,\"journal\":{\"name\":\"Tropical Medicine & International Health\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Medicine & International Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/tmi.14094\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Medicine & International Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/tmi.14094","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

摘要

背景:展示地质统计模型的应用和效用,以提供对大流行期间人口保护性免疫的全面高分辨率了解,并确定保护不够理想的地区。方法:利用2021年6月至10月在多米尼加共和国(DR)对6620人进行的全国横断面家庭调查数据,我们开发并应用了地质统计回归模型,以高分辨率(1公里)估计和预测异质地区的严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)尖峰(抗s)抗体(Ab)血清阳性率。结果:人口对SARS-CoV-2免疫的空间格局在dr各地有所不同。在城市地区,人均初级卫生保健单位数量每增加1个单位,20岁以下人口比例每增加1%,抗- s - Ab阳性的比值比分别为1.38(95%置信区间[CI]: 1.35-1.39)和1.35 (95% CI: 1.32-1.33)。在农村地区,随着最热月份(每°C)温度的升高,抗- s - Ab阳性的几率更高,为1.45 (95% CI: 1.39-1.51),而随着最湿月份(每毫米)降水的增加,抗- s - Ab阳性的几率为1.51 (95% CI: 1.43-1.60)。结论:综合具有重要背景意义的社会经济和环境因素的地质统计模型可用于在大流行期间以高空间分辨率创建稳健可靠的免疫保护预测图,并将有助于确定高度脆弱的地区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial prediction of immunity gaps during a pandemic to inform decision making: A geostatistical case study of COVID-19 in Dominican Republic.

Background: To demonstrate the application and utility of geostatistical modelling to provide comprehensive high-resolution understanding of the population's protective immunity during a pandemic and identify pockets with sub-optimal protection.

Methods: Using data from a national cross-sectional household survey of 6620 individuals in the Dominican Republic (DR) from June to October 2021, we developed and applied geostatistical regression models to estimate and predict Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike (anti-S) antibodies (Ab) seroprevalence at high resolution (1 km) across heterogeneous areas.

Results: Spatial patterns in population immunity to SARS-CoV-2 varied across the DR. In urban areas, a one-unit increase in the number of primary healthcare units per population and 1% increase in the proportion of the population aged under 20 years were associated with higher odds ratios of being anti-S Ab positive of 1.38 (95% confidence interval [CI]: 1.35-1.39) and 1.35 (95% CI: 1.32-1.33), respectively. In rural areas, higher odds of anti-S Ab positivity, 1.45 (95% CI: 1.39-1.51), were observed with increasing temperature in the hottest month (per°C), and 1.51 (95% CI: 1.43-1.60) with increasing precipitation in the wettest month (per mm).

Conclusions: A geostatistical model that integrates contextually important socioeconomic and environmental factors can be used to create robust and reliable predictive maps of immune protection during a pandemic at high spatial resolution and will assist in the identification of highly vulnerable areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tropical Medicine & International Health
Tropical Medicine & International Health 医学-公共卫生、环境卫生与职业卫生
CiteScore
4.80
自引率
0.00%
发文量
129
审稿时长
6 months
期刊介绍: Tropical Medicine & International Health is published on behalf of the London School of Hygiene and Tropical Medicine, Swiss Tropical and Public Health Institute, Foundation Tropical Medicine and International Health, Belgian Institute of Tropical Medicine and Bernhard-Nocht-Institute for Tropical Medicine. Tropical Medicine & International Health is the official journal of the Federation of European Societies for Tropical Medicine and International Health (FESTMIH).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信