不同填埋类型渗滤液中无机组分和微量污染物浓度的比较。

IF 3.7 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Dreyton Lott, Roya P Darioosh, Kate Weiksnar, Steven Laux, Timothy G Townsend
{"title":"不同填埋类型渗滤液中无机组分和微量污染物浓度的比较。","authors":"Dreyton Lott, Roya P Darioosh, Kate Weiksnar, Steven Laux, Timothy G Townsend","doi":"10.1177/0734242X251322146","DOIUrl":null,"url":null,"abstract":"<p><p>Landfill leachate characteristics vary depending on the type of waste facilities accept, such as municipal solid waste (MSW), construction and demolition debris (CDD) and MSW incineration (MSWI) ash. Optimizing disposal and treatment practices requires a thorough understanding of the behaviour of leachates from different classifications of refuse. This study provides a critical analysis of variation in leachate quality among over 80 sites based on landfill category: MSW, bulky debris, MSWI ash and MSW-MSWI ash co-disposal. Alkalinity was highest in leachates from facilities accepting MSW (average 2,810 mg L<sup>-1</sup>), and the average pH from sites disposing of only ash (7.04) was lower than anticipated. As expected, all leachates were observed to have much greater concentrations of chemical oxygen demand compared to biochemical oxygen demand and require advanced secondary treatment to remove this recalcitrant organic matter. Unsurprisingly, leachates from facilities accepting only ash had elevated concentrations of salts (32,400 mg L<sup>-1</sup> TDS), and those from MSW disposing sites reported high ammonia-nitrogen (381 mg L<sup>-1</sup>); co-disposal of MSW with ash resulted in elevated concentrations of both TDS and ammonia-nitrogen (19,400 mg L<sup>-1</sup> TDS, 543 mg L<sup>-1</sup> NH<sub>3</sub>-N). Metal concentrations among all leachate types were similar, though arsenic was elevated in landfills accepting only CDD. Trace organic chemicals like benzene were much higher in leachates from sites disposing of unburned residuals compared to those only accepting ash. Variation among landfill types were attributed to leachate flow characteristics, pH, degradation, waste composition and other biogeochemical interactions. The results demonstrate co-disposal practices can potentially require more leachate treatment than separate disposal scenarios.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"734242X251322146"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparison of bulk inorganic constituents and trace pollutant concentration in leachates by landfill type.\",\"authors\":\"Dreyton Lott, Roya P Darioosh, Kate Weiksnar, Steven Laux, Timothy G Townsend\",\"doi\":\"10.1177/0734242X251322146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Landfill leachate characteristics vary depending on the type of waste facilities accept, such as municipal solid waste (MSW), construction and demolition debris (CDD) and MSW incineration (MSWI) ash. Optimizing disposal and treatment practices requires a thorough understanding of the behaviour of leachates from different classifications of refuse. This study provides a critical analysis of variation in leachate quality among over 80 sites based on landfill category: MSW, bulky debris, MSWI ash and MSW-MSWI ash co-disposal. Alkalinity was highest in leachates from facilities accepting MSW (average 2,810 mg L<sup>-1</sup>), and the average pH from sites disposing of only ash (7.04) was lower than anticipated. As expected, all leachates were observed to have much greater concentrations of chemical oxygen demand compared to biochemical oxygen demand and require advanced secondary treatment to remove this recalcitrant organic matter. Unsurprisingly, leachates from facilities accepting only ash had elevated concentrations of salts (32,400 mg L<sup>-1</sup> TDS), and those from MSW disposing sites reported high ammonia-nitrogen (381 mg L<sup>-1</sup>); co-disposal of MSW with ash resulted in elevated concentrations of both TDS and ammonia-nitrogen (19,400 mg L<sup>-1</sup> TDS, 543 mg L<sup>-1</sup> NH<sub>3</sub>-N). Metal concentrations among all leachate types were similar, though arsenic was elevated in landfills accepting only CDD. Trace organic chemicals like benzene were much higher in leachates from sites disposing of unburned residuals compared to those only accepting ash. Variation among landfill types were attributed to leachate flow characteristics, pH, degradation, waste composition and other biogeochemical interactions. The results demonstrate co-disposal practices can potentially require more leachate treatment than separate disposal scenarios.</p>\",\"PeriodicalId\":23671,\"journal\":{\"name\":\"Waste Management & Research\",\"volume\":\" \",\"pages\":\"734242X251322146\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste Management & Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1177/0734242X251322146\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242X251322146","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

堆填区渗滤液的特性视乎所接受的废物设施的类别而有所不同,例如都市固体废物、建筑及拆卸废物和都市固体废物焚化灰。优化处置和处理方法需要彻底了解来自不同类别垃圾的渗滤液的行为。本研究对80多个填埋场的渗滤液质量变化进行了关键分析,这些填埋场的分类为:城市生活垃圾、体积较大的垃圾、城市生活垃圾灰和城市生活垃圾-城市生活垃圾灰共处置。碱度最高的是接收城市生活垃圾设施的渗滤液(平均2810 mg L-1),而仅处理灰的场所的平均pH值(7.04)低于预期。正如预期的那样,与生化需氧量相比,所有渗滤液的化学需氧量浓度都要高得多,需要进行高级二次处理以去除这种顽固性有机物。不出所料,来自只接受灰的设施的渗滤液盐浓度升高(32,400 mg L-1 TDS),而来自城市生活垃圾处理场的渗滤液报告了高氨氮浓度(381 mg L-1);城市生活垃圾与灰渣共处理后,TDS和氨氮浓度均升高(TDS 19,400 mg L-1, NH3-N 543 mg L-1)。所有类型的渗滤液中的金属浓度相似,但只接受CDD的垃圾填埋场中的砷含量升高。在处理未燃烧残留物的渗滤液中,苯等微量有机化学物质的含量远高于只处理灰烬的渗滤液。垃圾填埋场类型的差异归因于渗滤液流特征、pH、降解、废物组成和其他生物地球化学相互作用。结果表明,与单独处置方案相比,共同处置方案可能需要更多的渗滤液处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparison of bulk inorganic constituents and trace pollutant concentration in leachates by landfill type.

Landfill leachate characteristics vary depending on the type of waste facilities accept, such as municipal solid waste (MSW), construction and demolition debris (CDD) and MSW incineration (MSWI) ash. Optimizing disposal and treatment practices requires a thorough understanding of the behaviour of leachates from different classifications of refuse. This study provides a critical analysis of variation in leachate quality among over 80 sites based on landfill category: MSW, bulky debris, MSWI ash and MSW-MSWI ash co-disposal. Alkalinity was highest in leachates from facilities accepting MSW (average 2,810 mg L-1), and the average pH from sites disposing of only ash (7.04) was lower than anticipated. As expected, all leachates were observed to have much greater concentrations of chemical oxygen demand compared to biochemical oxygen demand and require advanced secondary treatment to remove this recalcitrant organic matter. Unsurprisingly, leachates from facilities accepting only ash had elevated concentrations of salts (32,400 mg L-1 TDS), and those from MSW disposing sites reported high ammonia-nitrogen (381 mg L-1); co-disposal of MSW with ash resulted in elevated concentrations of both TDS and ammonia-nitrogen (19,400 mg L-1 TDS, 543 mg L-1 NH3-N). Metal concentrations among all leachate types were similar, though arsenic was elevated in landfills accepting only CDD. Trace organic chemicals like benzene were much higher in leachates from sites disposing of unburned residuals compared to those only accepting ash. Variation among landfill types were attributed to leachate flow characteristics, pH, degradation, waste composition and other biogeochemical interactions. The results demonstrate co-disposal practices can potentially require more leachate treatment than separate disposal scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Waste Management & Research
Waste Management & Research 环境科学-工程:环境
CiteScore
8.50
自引率
7.70%
发文量
232
审稿时长
4.1 months
期刊介绍: Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信