医疗保健和生物系统不确定性量化的挑战和机遇。

IF 4.3 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Louise M Kimpton, L Mihaela Paun, Mitchel J Colebank, Victoria Volodina
{"title":"医疗保健和生物系统不确定性量化的挑战和机遇。","authors":"Louise M Kimpton, L Mihaela Paun, Mitchel J Colebank, Victoria Volodina","doi":"10.1098/rsta.2024.0232","DOIUrl":null,"url":null,"abstract":"<p><p>Uncertainty quantification (UQ) is an essential aspect of computational modelling and statistical prediction. Multiple applications, including geophysics, climate science and aerospace engineering, incorporate UQ in the development and translation of new technologies. In contrast, the application of UQ to biological and healthcare models is understudied and suffers from several critical knowledge gaps. In an era of personalized medicine, patient-specific modelling, and <i>digital twins</i>, a lack of UQ understanding and appropriate implementation of UQ methodology limits the success of modelling and simulation in a clinical setting. The main contribution of our review article is to emphasize the importance and current deficiencies of UQ in the development of computational frameworks for healthcare and biological systems. As the introduction to the special issue on this topic, we provide an overview of UQ methodologies, their applications in non-biological and biological systems and the current gaps and opportunities for UQ development, as later highlighted by authors publishing in the special issue.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.</p>","PeriodicalId":19879,"journal":{"name":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":"383 2292","pages":"20240232"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904623/pdf/","citationCount":"0","resultStr":"{\"title\":\"Challenges and opportunities in uncertainty quantification for healthcare and biological systems.\",\"authors\":\"Louise M Kimpton, L Mihaela Paun, Mitchel J Colebank, Victoria Volodina\",\"doi\":\"10.1098/rsta.2024.0232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Uncertainty quantification (UQ) is an essential aspect of computational modelling and statistical prediction. Multiple applications, including geophysics, climate science and aerospace engineering, incorporate UQ in the development and translation of new technologies. In contrast, the application of UQ to biological and healthcare models is understudied and suffers from several critical knowledge gaps. In an era of personalized medicine, patient-specific modelling, and <i>digital twins</i>, a lack of UQ understanding and appropriate implementation of UQ methodology limits the success of modelling and simulation in a clinical setting. The main contribution of our review article is to emphasize the importance and current deficiencies of UQ in the development of computational frameworks for healthcare and biological systems. As the introduction to the special issue on this topic, we provide an overview of UQ methodologies, their applications in non-biological and biological systems and the current gaps and opportunities for UQ development, as later highlighted by authors publishing in the special issue.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.</p>\",\"PeriodicalId\":19879,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":\"383 2292\",\"pages\":\"20240232\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904623/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2024.0232\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsta.2024.0232","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

不确定性量化(UQ)是计算建模和统计预测的一个重要方面。包括地球物理、气候科学和航空航天工程在内的多种应用将昆士兰大学纳入新技术的开发和转化中。相比之下,UQ在生物和医疗保健模型中的应用研究不足,并且存在几个关键的知识空白。在个性化医疗、患者特异性建模和数字双胞胎的时代,缺乏对UQ的理解和对UQ方法的适当实施限制了临床环境中建模和模拟的成功。我们的综述文章的主要贡献是强调了UQ在医疗保健和生物系统计算框架发展中的重要性和当前的不足。作为本专题特刊的介绍,我们提供了UQ方法的概述,它们在非生物和生物系统中的应用,以及UQ发展的当前差距和机遇,随后由作者在特刊上发表。本文是主题问题“医疗保健和生物系统的不确定性量化(第1部分)”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Challenges and opportunities in uncertainty quantification for healthcare and biological systems.

Uncertainty quantification (UQ) is an essential aspect of computational modelling and statistical prediction. Multiple applications, including geophysics, climate science and aerospace engineering, incorporate UQ in the development and translation of new technologies. In contrast, the application of UQ to biological and healthcare models is understudied and suffers from several critical knowledge gaps. In an era of personalized medicine, patient-specific modelling, and digital twins, a lack of UQ understanding and appropriate implementation of UQ methodology limits the success of modelling and simulation in a clinical setting. The main contribution of our review article is to emphasize the importance and current deficiencies of UQ in the development of computational frameworks for healthcare and biological systems. As the introduction to the special issue on this topic, we provide an overview of UQ methodologies, their applications in non-biological and biological systems and the current gaps and opportunities for UQ development, as later highlighted by authors publishing in the special issue.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 1)'.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.30
自引率
2.00%
发文量
367
审稿时长
3 months
期刊介绍: Continuing its long history of influential scientific publishing, Philosophical Transactions A publishes high-quality theme issues on topics of current importance and general interest within the physical, mathematical and engineering sciences, guest-edited by leading authorities and comprising new research, reviews and opinions from prominent researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信